A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electronic Structure Modulation of Fe-N-C for Oxygen Evolution Reaction via Transition Metal Dopants and Axial Ligands. | LitMetric

The popular single-atom catalyst (SAC) Fe-N4 is generally believed to be an excellent oxygen reduction reaction (ORR) electrocatalyst, which is less active in the oxygen evolution reaction (OER). Herein, FeM-N6 configuration catalysts (M = Fe, Co, Ni, Cu, Ag, and Au) were constructed for the oxygen evolution reaction by embedding M dopants on Fe-N4 systems based on the density functional theory. The electronic structure analysis reveals that the Fe-M metal interactions play dominant roles in regulating the d orbital distributions of Fe sites, which in turn alter the catalytic OER performance. Subsequent thermodynamic results indicate that the potential-determining step (PDS) for all catalysts is the formation of OOH*, which exhibits a tendency of decreased overpotentials with enhanced metal interactions. Apart from these, the effects of axial ligands on the OER activity of the catalysts in practical conditions were considered. Generally, most of the axial ligands are found to be thermodynamically favorable for the OER process. Interestingly, a competitive relationship of the electrons from the d orbital of Fe sites was found between the axial ligand and the adsorbed intermediate species during the reaction, which raises the energy barrier for OH* to O* conversion and can even alter the PDS in certain cases. The present work sheds new light on the design of future high-performance OER catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c08220DOI Listing

Publication Analysis

Top Keywords

oxygen evolution
12
evolution reaction
12
axial ligands
12
electronic structure
8
metal interactions
8
reaction
5
oer
5
structure modulation
4
modulation fe-n-c
4
oxygen
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!