Cancer chemotherapy has been shifted from conventional cytotoxic drug therapy to selective and target-specific therapy after the findings about DNA changes and proteins that are responsible for cancer. A large number of newer drugs were discovered as targeted therapy for particular types of neoplastic disease. The initial discovery includes the development of the first in the category, imatinib, a Bcr-Abl tyrosine kinase inhibitor (TKI) for the treatment of chronic myelocytic leukemia in 2001. But the joy did not last for long as the drug developed a point mutation within the ABL1 kinase domain of BCR-ABL1, which subsequently led to the discovery of many other TKIs. Resistance was observed for newer TKIs a few years after their launching, but the use of TKIs in life-threatening cancer therapy is considered as far better compared with the risks of disease because of its target specificity and hence less toxicity. In search of a better anticancer agent, the physiochemical properties of the lead molecule have been modified for its efficacy toward disease and delay in the development of resistance. Deuteration in the drug molecule is one of such modifications that alter the pharmacokinetic properties, generally its metabolism, as compared with its pharmacodynamic effects. Precision deuteration in many anticancer drugs has been carried out to search for better drugs for cancer. In this review, the majority of anticancer drugs and molecules for which deuteration was applied to get better anticancer molecules were discussed. This review will provide a complete guide about the benefits of deuteration in cancer chemotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/cbr.2023.0031 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!