NKG2D-CAR T cells eliminate senescent cells in aged mice and nonhuman primates.

Sci Transl Med

Department of Targeting Therapy and Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.

Published: August 2023

Cellular senescence, characterized by stable cell cycle arrest, plays an important role in aging and age-associated pathologies. Eliminating senescent cells rejuvenates aged tissues and ameliorates age-associated diseases. Here, we identified that natural killer group 2 member D ligands (NKG2DLs) are up-regulated in senescent cells in vitro, regardless of stimuli that induced cellular senescence, and in various tissues of aged mice and nonhuman primates in vivo. Accordingly, we developed and demonstrated that chimeric antigen receptor (CAR) T cells targeting human NKG2DLs selectively and effectively diminish human cells undergoing senescence induced by oncogenic stress, replicative stress, DNA damage, or P16 overexpression in vitro. Targeting senescent cells with mouse NKG2D-CAR T cells alleviated multiple aging-associated pathologies and improved physical performance in both irradiated and aged mice. Autologous T cells armed with the human NKG2D CAR effectively delete naturally occurring senescent cells in aged nonhuman primates without any observed adverse effects. Our findings establish that NKG2D-CAR T cells could serve as potent and selective senolytic agents for aging and age-associated diseases driven by senescence.

Download full-text PDF

Source
http://dx.doi.org/10.1126/scitranslmed.add1951DOI Listing

Publication Analysis

Top Keywords

senescent cells
20
nkg2d-car cells
12
aged mice
12
nonhuman primates
12
cells
10
cells aged
8
mice nonhuman
8
cellular senescence
8
aging age-associated
8
age-associated diseases
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!