The treatment efficiency of Chromium (Cr)-containing Printed Circuit Board (PCB) wastewater is significantly hampered by the limited physiological activity of microorganisms when activated sludge is applied. In this study, the biodegradation and electron transfer based on sulfur metabolism in the integrated (BESI®) process use sulfur as the electron acceptor to achieve sulfate reduction and sulfide oxidation, leading to efficient removal of Cr. The concentrations of total Cr and Cr(VI) in the effluent were reduced to 0.5 mg/L and 0.1 mg/L, respectively, from an initial range of 25-32 mg/L in the influent. The removal of Cr (ΔC(Cr(VI))) mainly occurred in the Sulfate Reduction (SR) reactor, which was significantly correlated with the generation of sulphide ([Formula: see text]) (R2 = 0.9987). Meantime, analysis of the microbial community showed that Cr (VI) stress increased the diversity of the bacterial community in sludge. The presence of Clostridium (52.54% and 47.78%) in SR & Sulfide Oxidation (SO) reactor, along with the Synergistaceae (31.90%) and Trichococcus (26.59%) in aerobic reactor, might contribute to the gradient degradation of COD, resulting in a removal efficiency exceeding 80% when treating an influent with a concentration of 1000 mg/L. In addition, the main precipitation components in the SR reactor were identified by scanning electron microscope, indicating that Cr has been removed from wastewater as Cr(OH)3 precipitation. This study sheds light on the potential of using the BESI® process for the real PCB wastewater treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10431613 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0290023 | PLOS |
Chemosphere
December 2024
Bursa Technical University, Department of Environmental Engineering, Bursa, Türkiye. Electronic address:
The pollution potential of a municipal wastewater treatment plant (WWTP) in Bursa, Türkiye, in terms of organochlorine pesticides (ΣOCPs), polychlorinated biphenyls (ΣPCBs), and polybrominated diphenyl ethers (ΣPBDEs), was investigated in air samples. Concentrations were determined using polyurethane foam disk samplers at key processes, such as the aeration tank (AT) and settling chamber (SC) of the WWTP and the background area (BA) at an urban site. Atmospheric concentration levels of PBDEs at the SC are 1.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China. Electronic address:
Sci Total Environ
December 2024
Physics, School of Natural Sciences, University of Galway, Galway City H91 CF50, Ireland.
Toxicol Rep
December 2024
National School of Applied Sciences of Al-Hoceima, Department of Energy and Environmental Civil Engineering / Engineering Sciences and Applications Laboratory / Abdelmalek Essaâdi University, Tetouan, Morocco.
Wastewater contains a variety of compounds qualified as pollutants. These undergo incomplete treatment in wastewater treatment plants. The objective of this study is to determine the potential impacts on humans and aquatic environment of 46 organic and inorganic micropollutants using the USE-tox® model.
View Article and Find Full Text PDFSci Total Environ
November 2024
Environmental Laboratory, IQS - Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain; Analytical and Applied Chemistry Department, IQS - Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain. Electronic address:
Polychlorinated biphenyls (PCBs) are a family of 209 congeners listed as Persistent Organic Pollutants in the Stockholm Convention. Although there has been a lot of focus on those congeners present in the Aroclor or Clophen technical mixtures commercialized in the past (legacy PCBs), other industrial processes such as paint and pigment production can generate other congeners as byproducts (Unintentionally Produced PCBs or UP-PCBs). The present study focuses on the analysis of 72 PCB congeners (including 42 UP-PCBs) in the two major rivers surrounding the city of Barcelona -Llobregat and Besós rivers-, and their levels in two wastewater treatment plants during the production of effluents and reclaimed water.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!