Abnormal expression of monoamine oxidase A (MAO-A) has been implicated in the development of human glioma, making MAO-A a promising target for therapy. Therefore, a rapid determination of MAO-A is critical for diagnosis. Through in silico screening of two-photon fluorophores, we discovered that a derivative of N,N-dimethyl-naphthalenamine (pre-mito) can effectively fit into the entrance of the MAO-A cavity. Substitutions on the N-pyridine not only further explore the MAO-A cavity, but also enable mitochondrial targeting ability. The aminopropyl substituted molecule, CD1, showed the fastest MAO-A detection (within 20 s), high MAO-A affinity and selectivity. It was also used for in situ imaging of MAO-A in living cells, enabling a comparison of the MAO-A content in human glioma and paracancerous tissues. Our results demonstrate that optimizing the affinity binding-based fluorogenic probes significantly improves their detection rate, providing a general approach for rapid detection probe design and optimization.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202310134DOI Listing

Publication Analysis

Top Keywords

mao-a
9
monoamine oxidase
8
affinity binding-based
8
human glioma
8
mao-a cavity
8
ultrafast detection
4
detection monoamine
4
oxidase live
4
live cells
4
cells clinical
4

Similar Publications

Backgrounds: Memory and emotion are especially vulnerable to psychiatric disorders such as post-traumatic stress disorder (PTSD), which is linked to disruptions in serotonin (5-HT) metabolism. Over 90% of the 5-HT precursor tryptophan (Trp) is metabolized via the Trp-kynurenine (KYN) metabolic pathway, which generates a variety of bioactive molecules. Dysregulation of KYN metabolism, particularly low levels of kynurenic acid (KYNA), appears to be linked to neuropsychiatric disorders.

View Article and Find Full Text PDF

Given its antioxidant effects and central nervous system benefits, we hypothesized that RJ6601 should improve neurodegeneration in the hippocampus, a region critical for cognition and the maintenance of quality of life (QoL). To assure its safety, a single fixed dose of 2000 mg/kg BW was administered to female Wistar rats (250-450 g, 18 months old) to test the acute toxicity of RJ6601. No mortality and toxicity signs were observed.

View Article and Find Full Text PDF

[ ZMU-T06 produces 2-substituted quinolines by oxidative dehydroaromatization].

Sheng Wu Gong Cheng Xue Bao

January 2025

Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China.

2-substituted quinolines are the building blocks for the synthesis of natural products and pharmaceuticals. In comparison with classical methods, dehydroaromatization of 2-substituted-1,2,3,4-tetrahydroquinolines has emerged in recent years as an efficient and straightforward method to synthesize quinolines due to its high atom economy and sustainability. However, existing chemical methods need transition metal catalysts and harsh reaction conditions.

View Article and Find Full Text PDF

HYDROGEN SULFIDE AND CYSTATHIONINE γ-LYASE LEVELS FOR PATIENTS WITH PARKINSON'S DISEASE.

Georgian Med News

November 2024

2Department of Chemistry, College of Science, University of Mosul, Iraq.

Parkinson's disease (PD) is a complicated neurodegenerative disease that is the most prevalent severe movement disorder worldwide. The research includes studying the levels of hydrogen sulphide (H2S) and cystathionine γ-lyase (CSE) with some biochemical parameters in the serum of patients with PD in Mosul City (Iraq), which include Serotonin (SERT), dopamine (DA), sphingomyelin (SM), vitamin B12, Acetylcholine esterase (AChE), monoamine oxidase (MAO), creatine kinase (CK), aspartate aminotransferase (AST), alanine aminotransferase (ALT). Samples reached (100), which included: (40) for the Parkinson's patients group, and (60) for the control group.

View Article and Find Full Text PDF

Background: The entomopathogenic fungus Beauveria bassiana has been widely used for pest biocontrol with conidia serving as the main active agents. Conidial yield and quality are two important characteristics in fungal conidia development, however, the regulatory mechanisms that orchestrate conidial formation and development are not well understood.

Results: In this study, we identified a ZnCys transcription factor BbCDR1 that inhibits conidial production while promoting conidial maturation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!