Human stem-cell-derived organoids represent a promising substrate for transplantation-based neural repair. Here, we describe a protocol for transplanting forebrain organoids into an injured adult rat visual cortex. This protocol includes surgical details for craniectomy, aspiration injury, organoid transplantation, and cranioplasty. This platform represents a valuable tool for investigating the efficacy of organoids as structured grafts for neural repair. For complete details on the use and execution of this protocol, please refer to Jgamadze et al..
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10436235 | PMC |
http://dx.doi.org/10.1016/j.xpro.2023.102470 | DOI Listing |
Bioact Mater
April 2025
State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
Biomimetic neural substitutes, constructed through the bottom-up assembly of cell-matrix modulus via 3D bioprinting, hold great promise for neural regeneration. However, achieving precise control over the fate of neural stem cells (NSCs) to ensure biological functionality remains challenging. Cell behaviors are closely linked to cellular dynamics and cell-matrix mechanotransduction within a 3D microenvironment.
View Article and Find Full Text PDFExp Ther Med
March 2025
Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830000, P.R. China.
Spinal cord injury (SCI) is a severe condition that often leads to permanent functional impairments. The current treatment options are limited and there is a need for more effective treatments. Human umbilical cord mesenchymal stem cells (hUCMSCs) have shown promise in promoting neuroregeneration and modulating immune response.
View Article and Find Full Text PDFNeural Regen Res
January 2025
Ajou University School of Medicine, Department of Brain Science, Suwon, Republic of Korea.
Spinal cord injury results in permanent loss of neurological functions due to severance of neural networks. Transplantation of neural stem cells holds promise to repair disrupted connections. Yet, ensuring the survival and integration of neural stem cells into the host neural circuit remains a formidable challenge.
View Article and Find Full Text PDFNeural Regen Res
January 2025
School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
After spinal cord injury, impairment of the sensorimotor circuit can lead to dysfunction in the motor, sensory, proprioceptive, and autonomic nervous systems. Functional recovery is often hindered by constraints on the timing of interventions, combined with the limitations of current methods. To address these challenges, various techniques have been developed to aid in the repair and reconstruction of neural circuits at different stages of injury.
View Article and Find Full Text PDFNeural Regen Res
January 2025
Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
Intracerebral hemorrhage is the most dangerous subtype of stroke, characterized by high mortality and morbidity rates, and frequently leads to significant secondary white matter injury. In recent decades, studies have revealed that gut microbiota can communicate bidirectionally with the brain through the gut microbiota-brain axis. This axis indicates that gut microbiota is closely related to the development and prognosis of intracerebral hemorrhage and its associated secondary white matter injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!