The mechanistic role of cardiac glycosides in DNA damage response and repair signaling.

Cell Mol Life Sci

Department of Medicine, School of Medicine, Joseph E Walther Hall, Indiana University, 980 W. Walnut St, C560, R3-C560, Indianapolis, IN, 46202, USA.

Published: August 2023

Cardiac glycosides (CGs) are a class of bioactive organic compounds well-known for their application in treating heart disease despite a narrow therapeutic window. Considerable evidence has demonstrated the potential to repurpose CGs for cancer treatment. Chemical modification of these CGs has been utilized in attempts to increase their anti-cancer properties; however, this has met limited success as their mechanism of action is still speculative. Recent studies have identified the DNA damage response (DDR) pathway as a target of CGs. DDR serves to coordinate numerous cellular pathways to initiate cell cycle arrest, promote DNA repair, regulate replication fork firing and protection, or induce apoptosis to avoid the survival of cells with DNA damage or cells carrying mutations. Understanding the modus operandi of cardiac glycosides will provide critical information to better address improvements in potency, reduced toxicity, and the potential to overcome drug resistance. This review summarizes recent scientific findings of the molecular mechanisms of cardiac glycosides affecting the DDR signaling pathway in cancer therapeutics from 2010 to 2022. We focus on the structural and functional differences of CGs toward identifying the critical features for DDR targeting of these agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10432338PMC
http://dx.doi.org/10.1007/s00018-023-04910-9DOI Listing

Publication Analysis

Top Keywords

cardiac glycosides
16
dna damage
12
damage response
8
cgs
5
mechanistic role
4
cardiac
4
role cardiac
4
glycosides
4
dna
4
glycosides dna
4

Similar Publications

Calotropis procera (Aiton) W.T. Aiton is a medicinal plant belonging to the family Apocynaceae as a core source of natural cardenolides.

View Article and Find Full Text PDF

A 7,000-year-old multi-component arrow poison from Kruger Cave, South Africa.

iScience

December 2024

Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa.

We present the results of a GC-MS and UHPLC-MS analysis of residue recovered from the marrow cavity of a 7,000-year-old bovid femur from Kruger Cave, South Africa. The femur was filled with an unknown substance into which were embedded three bone arrowheads, indicating that the femur served as a quiver. Our results reveal the presence of digitoxin and strophanthidin, both cardiac glycosides associated with hunting poisons.

View Article and Find Full Text PDF

Two New Cardiac Glycosides from Streblus asper.

Chem Biodivers

December 2024

Fudan University, School of Pharmacy, Jinke Road 3728, Shanghai, CHINA.

Two undescribed cardiac glycosides, strasperoside K (1) and L (2), together with five known analogues (3-7), were isolated from Streblus asper Lour. Their structures were elucidated on the basis of spectroscopic analysis and chemical methods. The inhibitory activities of isolated compounds against porcine epidemic diarrhea virus (PEDV) and six strains of pathogenic bacteria were evaluated.

View Article and Find Full Text PDF

Datura Stramonium is a well-known and important medicinal plant that is widely used in various medical systems to treat conditions such as asthma, diabetes, and inflammatory diseases. The aim of this study was to prepare extracts of D. stramonium seeds in different solvent polarities for assessing phytochemical potential, in vitro biological activities, and molecular docking studies.

View Article and Find Full Text PDF

[Quality analysis of Xueshuan Xinmaining Tablets and Capsules based on UPLC-Q/TOF-MS and UPLC-QQQ-MS/MS].

Zhongguo Zhong Yao Za Zhi

October 2024

National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700, China.

Xueshuan Xinmaining Tablets and Capsules are two Chinese patent medicines with the same prescription, different preparation methods but the same function of replenishing Qi, activating blood, opening orifices, and relieving pain. Xueshuan Xinmaining Capsules were qualitatively analyzed by UPLC-Q/TOF-MS for the first time, and 61 compounds were identified, including 9 phenolic acids, 10 bufadienolides, 15 saponins, 5 bile acids, and 22 other compounds. The chemical composition was slightly different between Xueshuan Xinmaining Tablets and Capsules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!