We estimate our hand's position by combining relevant visual and proprioceptive cues. A cross-sensory spatial mismatch can be created by viewing the hand through a prism or, more recently, rotating a visual cursor that represents hand position. This is often done in the context of target-directed reaching to study motor adaptation, the systematic updating of motor commands in response to a systematic movement error. However, a visuo-proprioceptive mismatch also elicits recalibration in the relationship between the hand's seen and felt position. The principles governing visuo-proprioceptive recalibration are poorly understood, compared to motor adaptation. For example, motor adaptation occurs robustly whether the cursor is rotated quickly or slowly, although the former may involve more explicit processes. Here, we asked whether visuo-proprioceptive recalibration, in the absence of motor adaptation, works the same way. Three groups experienced a 70 mm visuo-proprioceptive mismatch about their hand at a Slow, Medium, or Fast rate (0.84, 1.67, or 3.34 mm every two trials, respectively), with no error feedback. Once attained, the 70 mm mismatch was maintained for the remaining trials. Total recalibration differed significantly across groups, with the Fast, Medium, and Slow groups recalibrating 63.7, 56.3, and 42.8 mm on average, respectively. This suggests a slower mismatch rate may be less effective at eliciting recalibration. In contrast to motor adaptation studies, no further recalibration was observed in the maintenance phase. This may be related to the distinct mechanisms thought to contribute to perceptual recalibration via cross-sensory cue conflict versus sensory prediction errors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11017161 | PMC |
http://dx.doi.org/10.1007/s00221-023-06685-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!