Blind readers use a tactile reading system consisting of raised dot arrays: braille/⠃⠗⠇. How do human brains implement reading by touch? The current study looked for signatures of reading-specific orthographic processes in braille, separate from low-level somatosensory responses and semantic processes. Of specific interest were responses in posterior parietal cortices (PPCs), because of their role in high-level tactile perception. Congenitally blind, proficient braille readers read real words and pseudowords by touch while undergoing fMRI. We leveraged the system of contractions in English braille, where one braille cell can represent multiple English print letters (e.g., "ing" ⠬, "one" ⠐⠕), making it possible to separate physical and orthographic word length. All words in the study consisted of four braille cells, but their corresponding Roman letter spellings varied from four to seven letters (e.g., "con-c-er-t" ⠒⠉⠻⠞. contracted: four cells; uncontracted: seven letters). We found that the bilateral supramarginal gyrus in the PPC increased its activity as the uncontracted word length increased. By contrast, in the hand region of primary somatosensory cortex (S1), activity increased as a function of a low-level somatosensory feature: dot-number per word. The PPC also showed greater response to pseudowords than real words and distinguished between real and pseudowords in multivariate-pattern analysis. Parieto-occipital, early visual and ventral occipito-temporal, as well as prefrontal cortices also showed sensitivity to the real-versus-pseudoword distinction. We conclude that PPC is involved in orthographic processing for braille, that is, braille character and word recognition, possibly because of braille's tactile modality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10877400 | PMC |
http://dx.doi.org/10.1162/jocn_a_02041 | DOI Listing |
Exp Neurobiol
December 2024
Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Korea.
Research on brain aging using resting-state functional magnetic resonance imaging (rs-fMRI) has typically focused on comparing "older" adults to younger adults. Importantly, these studies have often neglected the middle age group, which is also significantly impacted by brain aging, including by early changes in motor, memory, and cognitive functions. This study aims to address this limitation by examining the resting state networks in middle-aged adults via an exploratory whole-brain ROI-to-ROI analysis.
View Article and Find Full Text PDFJAMA Neurol
January 2025
Department of Radiology, Mayo Clinic, Rochester, Minnesota.
Importance: Although 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) is a well-established cross-sectional biomarker of brain metabolism in dementia with Lewy bodies (DLB), the longitudinal change in FDG-PET has not been characterized.
Objective: To investigate longitudinal FDG-PET in prodromal DLB and DLB, including a subsample with autopsy data, and report estimated sample sizes for a hypothetical clinical trial in DLB.
Design, Setting, And Participants: Longitudinal case-control study with mean (SD) follow-up of 3.
F-Florbetaben (FBB) uptake in the supratentorial cortex is indicative of amyloid positivity. Due to PET's low spatial resolution, image noise, and spill-over of signal from adjacent white-matter into gray-matter, there are inconsistencies in ratings among trained readers. A set of 264 F-Florbetaben (amyloid) PET/MRI exams were reconstructed using conventional ordered subset expectation maximization (OSEM) method and MR-guided block sequential regularized expectation maximization (MRgBSREM) method.
View Article and Find Full Text PDFClin Neurol Neurosurg
January 2025
Department of Neurocience and Mental Health, Botucatu Medical School (UNESP), Botucatu, São Paulo, Brazil.
Introduction: Our primary clinical trial indicated that anodal stimulation of the right posterior parietal region associated with specific and perceptual task training was superior to placebo in reducing stroke-induced hemispatial neglect (HN) immediately after the treatment protocol. However, our primary study did not investigate whether this benefit was maintained in the long term after stroke. Therefore, this study aimed to evaluate the long-term effects of the protocol applied in the ELETRON trial on outcomes associated with HN, functionality, and mortality.
View Article and Find Full Text PDFEpilepsia
January 2025
Texas Comprehensive Epilepsy Program, Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas, USA.
Objective: The pulvinar nucleus of the thalamus has extensive cortical connections with the temporal, parietal, and occipital lobes. Deep brain stimulation (DBS) targeting the pulvinar nucleus, therefore, carries the potential for therapeutic benefit in patients with drug-resistant posterior quadrant epilepsy (PQE) and neocortical temporal lobe epilepsy (TLE). Here, we present a single-center experience of patients managed via bilateral DBS of the pulvinar nucleus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!