AI Article Synopsis

  • Traditional studies focused on the brain's "online" state during active engagement with the environment, but new evidence suggests significant time is spent in an "offline" state, where attention shifts inward.
  • This research aimed to understand the role of these alternating states in balancing the needs for encoding new information and consolidating existing memories.
  • Findings show that a distinct offline state, characterized by certain brain activity and reduced external attention, is linked to better memory performance, supporting the idea that even short periods of being "offline" can enhance memory consolidation.

Article Abstract

Traditionally, neuroscience and psychology have studied the human brain during periods of "online" attention to the environment, while participants actively engage in processing sensory stimuli. However, emerging evidence shows that the waking brain also intermittently enters an "offline" state, during which sensory processing is inhibited and our attention shifts inward. In fact, humans may spend up to half of their waking hours offline [Wamsley, E. J., & Summer, T. Spontaneous entry into an "offline" state during wakefulness: A mechanism of memory consolidation? Journal of Cognitive Neuroscience, 32, 1714-1734, 2020; Killingsworth, M. A., & Gilbert, D. T. A wandering mind is an unhappy mind. Science, 330, 932, 2010]. The function of alternating between online and offline forms of wakefulness remains unknown. We hypothesized that rapidly switching between online and offline states enables the brain to alternate between the competing demands of encoding new information and consolidating already-encoded information. A total of 46 participants (34 female) trained on a memory task just before a 30-min retention interval, during which they completed a simple attention task while undergoing simultaneous high-density EEG and pupillometry recording. We used a data-driven method to parse this retention interval into a sequence of discrete online and offline states, with a 5-sec temporal resolution. We found evidence for three distinct states, one of which was an offline state with features well-suited to support memory consolidation, including increased EEG slow oscillation power, reduced attention to the external environment, and increased pupil diameter (a proxy for increased norepinephrine). Participants who spent more time in this offline state following encoding showed improved memory at delayed test. These observations are consistent with the hypothesis that even brief, seconds-long entry into an offline state may support the early stages of memory consolidation.

Download full-text PDF

Source
http://dx.doi.org/10.1162/jocn_a_02035DOI Listing

Publication Analysis

Top Keywords

memory consolidation
12
offline states
12
online offline
12
offline state
12
offline
8
"offline" state
8
retention interval
8
memory
6
state
5
consolidation ultra-short
4

Similar Publications

Shaping the structural dynamics of motor learning through cueing during sleep.

Sleep

January 2025

UR2NF-Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN - Centre for Research in Cognition and Neurosciences and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.

Enhancing the retention of recent memory traces through sleep reactivation is possible via Targeted Memory Reactivation (TMR), involving cueing learned material during post-training sleep. Evidence indicates detectable short-term microstructural changes in the brain within an hour after motor sequence learning, and post-training sleep is believed to contribute to the consolidation of these motor memories, potentially leading to enduring microstructural changes. In this study, we explored how TMR during post-training sleep affects performance gains and delayed microstructural remodeling, using both standard Diffusion Tensor Imaging (DTI) and advanced Neurite Orientation Dispersion & Density Imaging (NODDI).

View Article and Find Full Text PDF

Emotional stress increases GluA2 expression and potentiates fear memory via adenylyl cyclase 5.

Cell Rep

January 2025

Department of Cell Biology and Anatomy, LSUHSC, New Orleans, LA 70112, USA; Southeast Louisiana VA Healthcare System, New Orleans, LA 70119, USA. Electronic address:

Stress can alter behavior and contributes to psychiatric disorders by regulating the expression of the GluA2 AMPA receptor subunit. We have previously shown in mice that exposure to predator odor stress elevates GluA2 transcription in cerebellar molecular layer interneurons (MLIs), and MLI activity is required for fear memory consolidation. Here, we identified the critical involvement of adenylyl cyclase 5, in both the stress-induced increase in GluA2 in MLIs and the enhancement of fear memory.

View Article and Find Full Text PDF

Episodic memory is a critical cognitive function that enables the encoding, storage, and retrieval of new information. Memory consolidation, a key stage of episodic memory, stabilizes this newly encoded information into long-lasting brain "storage." Studies using fMRI to investigate post-encoding awake rest holds promise to shed light on early, immediate consolidation mechanisms.

View Article and Find Full Text PDF

Background: The tachykinin substance P (SP) facilitates learning and memory processes after its central administration. Activation of its different receptive sites, neurokinin-1 receptors (NK1Rs), as well as NK2Rs and NK3Rs was shown to influence learning and memory. The basal ganglia have been confirmed to play an important role in the control of memory processes and spatial learning mechanisms, and as part of the basal ganglia, the globus pallidus (GP) may also be involved in this regulation.

View Article and Find Full Text PDF

Individualized temporal patterns drive human sleep spindle timing.

Proc Natl Acad Sci U S A

January 2025

Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115.

Sleep spindles are cortical electrical oscillations considered critical for memory consolidation and sleep stability. The timing and pattern of sleep spindles are likely to be important in driving synaptic plasticity during sleep as well as preventing disruption of sleep by sensory and internal stimuli. However, the relative importance of factors such as sleep depth, cortical up/down-state, and temporal clustering in governing sleep spindle dynamics remains poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!