Enzyme-Compatible Core-Shell Nanoreactor for in Situ H -Driven NAD(P)H Regeneration.

Angew Chem Int Ed Engl

Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China.

Published: September 2023

The regeneration of the reduced form cofactor NAD(P)H is essential for the extra-cellular application of bio-reduction, which necessitates not only the development of efficient artificial NAD(P)H regeneration catalytic system but also its well compatibility with the cascade enzymatic reduction system. In this work, we reported the preparation of a metal nanoparticle (NP) and metal complex integrated core-shell nanoreactor for H -driven NAD(P)H regeneration through the immobilization of a Rh complex on Ni/TiO surface via a bipyridine contained 3D porous organic polymer (POP). In comparison with the corresponding single component metal NPs and the immobilized Rh complex, the integrated catalyst presented simultaneously enhanced activity and selectivity in NAD(P)H regeneration thanks to the rapid spillover of activated H species from metal NPs to Rh complex. In addition, the size-sieving effect of POP precluded the direct interaction of enzyme and Rh complex confined in the pores, enabling the success coupling of core-shell nanoreactor and aldehyde ketone reductase (AKR) for chemoenzymatic reduction of acetophenone to (R)-1-phenylethan-1-ol. This work provides a strategy for the rational manipulation of multicomponent cooperation catalysis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202309929DOI Listing

Publication Analysis

Top Keywords

nadph regeneration
16
core-shell nanoreactor
12
-driven nadph
8
complex integrated
8
metal nps
8
nadph
5
regeneration
5
complex
5
enzyme-compatible core-shell
4
nanoreactor situ
4

Similar Publications

Background: Tissue damage by viral hepatitis is a major cause of morbidity and mortality worldwide. Oxidation reactions and reactive oxygen species (ROS) transform proteins and lipids in plasma low-density lipoproteins (LDL) into the abnormal oxidized LDL (ox-LDL). Hepatitis C virus (HCV) infection induces oxidative/nitrosative stress from multiple sources, including the inducible nitric oxide synthase (iNOS), the mitochondrial electron transport chain, hepatocyte NAD(P)H oxidases (NOX enzymes), and inflammation.

View Article and Find Full Text PDF

Background: Metformin, a commonly prescribed medication for managing diabetes, has garnered increasing interest as a potential therapeutic option for combating cancer and aging.

Methods: The current study investigated the effects of metformin treatment on human meibomian gland epithelial cells (hMGECs) at morphological, molecular, and electron microscopy levels. HMGECs were stimulated in vitro with 1 mM, 5 mM, and 10 mM metformin for 24, 48, and 72 h.

View Article and Find Full Text PDF

Turning the band alignment of carbon dots for visible-light-driven enzymatic asymmetric reduction of aromatic ketone.

Int J Biol Macromol

January 2025

Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education; College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China. Electronic address:

Keto reductases are crucial NAD(P)H-dependent enzymes used for the enantioselective synthesis of alcohols from prochiral ketones. Typically, the NADPH cofactor is regenerated through a second enzyme and/or substrate. However, photocatalytic cofactor regeneration using water as a sacrificial electron and hydrogen donor presents a promising alternative, albeit a challenging one.

View Article and Find Full Text PDF

Bio-inspired Catalyst-Modified Photocathode for Bias-Free Photoelectrochemical NADH Regeneration.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning, 116024, China.

Cofactors such as nicotinamide adenine dinucleotide (NADH) and its phosphorylated form (NADPH) play a crucial role in natural enzyme-catalyzed reactions for the synthesis of chemicals. However, the stoichiometric supply of NADH for artificial synthetic processes is uneconomical. Here, inspired by the process of cofactor NADPH regeneration in photosystem I (PSI), catalyst-modified photocathodes are constructed on the surface of polythiophene-based semiconductors (PTTH) via self-assembly for photoelectrochemical catalytic NADH regeneration.

View Article and Find Full Text PDF

Functional Expression and Construction of a Self-Sufficient Cytochrome P450 Chimera for Efficient Steroidal C14α Hydroxylation in Escherichia coli.

Biotechnol Bioeng

December 2024

National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China.

C14-functionalized steroids enabled diverse biological activities in anti-gonadotropin and anticancer therapy. However, access to C14-functionalized steroids was impeded by the deficiency of chemical synthetic methods. Recently, several membrane-bound fungal cytochrome P450s (CYPs) have been identified with steroid C14α-hydroxylation activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!