High-throughput DNA sequencing studies increasingly associate DNA variants with congenital heart disease (CHD). However, functional modeling is a crucial prerequisite for translating genomic data into clinical care. We used CRISPR-Cas9-mediated targeting of 12 candidate genes in the vertebrate model medaka (Oryzias latipes), five of which displayed a novel cardiovascular phenotype spectrum in F0 (crispants): mapre2, smg7, cdc42bpab, ankrd11 and myrf, encoding a transcription factor recently linked to cardiac-urogenital syndrome. Our myrf mutant line showed particularly prominent embryonic cardiac defects recapitulating phenotypes of pediatric patients, including hypoplastic ventricle. Mimicking human mutations, we edited three sites to generate specific myrf single-nucleotide variants via cytosine and adenine base editors. The Glu749Lys missense mutation in the conserved intramolecular chaperon autocleavage domain fully recapitulated the characteristic myrf mutant phenotype with high penetrance, underlining the crucial function of this protein domain. The efficiency and scalability of base editing to model specific point mutations accelerate gene validation studies and the generation of human-relevant disease models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10445736PMC
http://dx.doi.org/10.1242/dmm.049811DOI Listing

Publication Analysis

Top Keywords

base editing
8
congenital heart
8
heart disease
8
myrf mutant
8
myrf
5
crispr-based knockout
4
knockout base
4
editing confirm
4
confirm role
4
role myrf
4

Similar Publications

Primary hepatocellular carcinoma (PHC) is the sixth most common cancer and the third leading cause of cancer death worldwide. Hepatocellular carcinoma (HCC) accounts for 75%-85% of PHC. LARP3 is aberrantly expressed in multiple cancers.

View Article and Find Full Text PDF

Leydig cells produce hormones that are required for male development, fertility, and health. Two Leydig cell populations produce these hormones but at different times during development: fetal Leydig cells which are active during fetal life and adult Leydig cells that are functional postnatally. Historically, our ability to understand the origin and function of Leydig cells has been made difficult by the lack of genetic models to exclusively target these cells.

View Article and Find Full Text PDF

Purpose: To evaluate levels of 3 tear-soluble neuropeptides in dry eye patients and to identify the correlations with clinical signs and symptoms.

Methods: A total of 16 dry eye patients and 12 healthy volunteers were enrolled. Dry eye disease (DED) diagnosis was based on the 2017 Report of the Tear Film & Ocular Surface Society International Dry Eye Workshop (TFOS DEWS II).

View Article and Find Full Text PDF

Novel Allele HLA-B*52:130, Identified by Next-Generation Sequencing.

HLA

January 2025

Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Medical University, Moscow, Russia.

The new HLA-B*52:130 allele showed one nonsynonymous nucleotide difference compared to the HLA-B*52:01:01:01 allele in codon 170.

View Article and Find Full Text PDF

Design and validation of cell-based potency assays for frataxin supplementation treatments.

Mol Ther Methods Clin Dev

December 2024

Department of Neurology, O'Donnell Brain Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA.

Friedreich's ataxia (FRDA) is a multisystem, autosomal recessive disorder caused by mutations in the frataxin () gene. As FRDA is considered an FXN deficiency disorder, numerous therapeutic approaches in development or clinical trials aim to supplement FXN or restore endogenous expression. These include gene therapy, protein supplementation, genome editing or upregulation of transcription.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!