Deep learning-based high-throughput detection of in vitro germination to assess pollen viability from microscopic images.

J Exp Bot

Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, Kita 11, Nishi 10, Kita-ku, Sapporo 060-0811, Japan.

Published: November 2023

AI Article Synopsis

  • In vitro pollen germination is an effective way to evaluate pollen viability, relying on measuring germination frequency and pollen tube length.
  • This study introduces a Mask R-CNN model trained on microscopic images of tree peony pollen to quickly quantify germination rates and pollen tube lengths.
  • The model showed high accuracy, achieving a mean average precision of 0.949, and demonstrated its capability to be applied to other plant species, indicating broad potential for use in pollen viability assessments.

Article Abstract

In vitro pollen germination is considered the most efficient method to assess pollen viability. The pollen germination frequency and pollen tube length, which are key indicators of pollen viability, should be accurately measured during in vitro culture. In this study, a Mask R-CNN model trained using microscopic images of tree peony (Paeonia suffruticosa) pollen has been proposed to rapidly detect the pollen germination rate and pollen tube length. To reduce the workload during image acquisition, images of synthesized crossed pollen tubes were added to the training dataset, significantly improving the model accuracy in recognizing crossed pollen tubes. At an Intersection over Union threshold of 50%, a mean average precision of 0.949 was achieved. The performance of the model was verified using 120 testing images. The R2 value of the linear regression model using detected pollen germination frequency against the ground truth was 0.909 and that using average pollen tube length was 0.958. Further, the model was successfully applied to two other plant species, indicating a good generalizability and potential to be applied widely.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10662222PMC
http://dx.doi.org/10.1093/jxb/erad315DOI Listing

Publication Analysis

Top Keywords

pollen germination
16
pollen
13
pollen viability
12
pollen tube
12
tube length
12
assess pollen
8
microscopic images
8
germination frequency
8
crossed pollen
8
pollen tubes
8

Similar Publications

The success of pollen-pistil interaction in Mauritia flexuosa (buriti), a palm adapted to the humid ecosystems, 'veredas', within the Cerrado, is influenced by intrinsic and environmental factors. Its supra-annual flowering, dioecy, and adverse climate conditions pose challenges for fertilization, therefore information on floral biology is essential. This study aimed to ascertain stigma receptivity, and elucidate structural, cytochemical, and ultrastructural aspects of the pollen-pistil relationship.

View Article and Find Full Text PDF

ALBA3 maintains male fertility under heat stress in plants.

J Integr Plant Biol

January 2025

School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.

Heat stress (HS) at the reproductive stage detrimentally affects crop yields and seed quality. However, the molecular mechanisms that protect reproductive processes in plants under HS remain largely unknown. Here, we report that Acetylation Lowers Binding Affinity 3 (ALBA3) is crucial for safeguarding male fertility against HS in Arabidopsis.

View Article and Find Full Text PDF

Pollen tube-expressed RUPO forms a complex with OsMTD2 and OsRALF17 and OsRALF19 peptides in rice (Oryza sativa).

J Plant Physiol

January 2025

Department of Life Science and Environmental Biochemistry, and Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea. Electronic address:

Pollen tubes are crucial for angiosperm plants, as they deliver sperm gametes for the essential process of double fertilization. Understanding the molecular mechanisms behind pollen tube germination and growth is critical; however, these processes remain partially elucidated in monocot cereal crops. Rapid Alkalinization Factor (RALF), a small peptide of about 5 kDa, binds to the CrRLK1L receptor and plays a role in various plant physiological processes, including reproduction and tip growth.

View Article and Find Full Text PDF

Pollen and Stigma Morphology, Pollen Viability and Stigma Receptivity of Wittmackia Species (Bromeliaceae) by Light, Fluorescence and Scanning Electron Microscopy.

Microsc Res Tech

January 2025

Programa de Pós-graduação Em Recursos Genéticos Vegetais, Universidade Federal Do Recôncavo da Bahia (UFRB), Programa de Pós-graduação Em Recursos Genéticos Vegetais, Cruz das Almas, Bahia, Brazil.

The genus Wittmackia has 44 species distributed in two centers of diversity: the Brazilian clade and the Caribbean clade. The Brazilian clade includes 29 species, with geographic distribution concentrated in the Northeast of Brazil. This study reports the morphology, ultrastructure, pollen viability and stigma receptivity by different microscopy techniques of 23 species of the genus Wittmackia endemic to Brazil and occurring in Atlantic Forest areas.

View Article and Find Full Text PDF

Extracellular AMP Inhibits Pollen Tube Growth in via Disrupted Calcium Gradient and Disorganized Microfilaments.

Plants (Basel)

December 2024

State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.

Adenosine monophosphate (AMP) is a hydrolysis product of adenosine triphosphate (ATP) and adenosine diphosphate (ADP). In mammalian cells, extracellular AMP functions as a signaling molecule by binding to adenosine A1 receptors, thereby activating various intracellular signaling pathways. However, the role of extracellular AMP in plant cells remains largely unclear, and homologs of A1 receptors have not been identified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!