Two derivatives of a "super stable" Blatter radical (1,3-diphenyl-7-trifluoromethyl-1,4-dihydrobenzo[][1,2,4]triazin-4-yl) with N(1)-Ar = 2-CFCH and 2-MeOCH were obtained and investigated using XRD and SQUID magnetometry methods. The investigation revealed strong antiferromagnetic interactions in both radicals, which are described using the Hatfield model. For the latter radical, an abrupt and reversible change in the () plot was observed at 29 K. It was ascribed to a structural transition, consistent with a two-dimensional to one-dimensional thermally activated crossover, as supported by specific heat measurements (). It is suggested that the transition is related to an order-disorder transition of the CF group, which is corroborated using XRD structural analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3cp01298k | DOI Listing |
Heliyon
January 2025
Faculty of Civil Engineering and Transportation, University of Isfahan, Isfahan, Iran.
This study focuses on generating high-resolution annual solar energy potential maps (ASMs) using global Digital Elevation Models (DEMs) to aid in solar panel placement, especially in urban areas. A framework was developed to enhance the resolution of these maps. Initially, the accuracy of ASMs derived from various DEMs was compared with LiDAR-derived ASMs.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621010, China.
The Daguangbao landslide (DGBL), triggered by the 2008 Wenchuan earthquake, is a rare instance of super-giant landslides globally. The post-earthquake evolution of the DGBL has garnered significant attention in recent years; however, its deformation patterns remain poorly characterized owing to the complex local topography. In this study, we present the first observations of the surface dynamics of DGBL by integrating satellite- and ground-based InSAR data complemented by kinematic interpretation using a LiDAR-derived Digital Surface Model (DSM).
View Article and Find Full Text PDFMaterials (Basel)
January 2025
ABB Corporate Technology Center, 13A Starowislna Str., 31-038 Krakow, Poland.
In this study, it is shown that an efficient organic optocoupler (OPC) can be fabricated using commercially available and solution-processable organic semiconductors. The transmitter is a single-active-layer organic light-emitting diode (OLED) made from a well-known polyparavinylene derivative, Super Yellow. The receiver is an organic light-emitting diode (OLSD) with a single active layer consisting of a mixture of the polymer donor PTB7-Th and the low-molecular-weight acceptor ITIC; the receiver operates without an applied reverse voltage.
View Article and Find Full Text PDFBiomed Mater
January 2025
Dagestan State Medical University of the Ministry of Health of the Russian Federation, Makhachkala, Mahackala, Dagestan, 367000, RUSSIAN FEDERATION.
Suture-associated surgical site infection (SSI) causes bacterial pathogens to colonize on the suture surface that are highly resistant to antibiotic treatment. Conventional suture materials used in surgical practice are causing complications such as infection and chronic inflammation. Surgical suture materials with antibacterial coatings are widely used in surgical practice.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA.
Most tumors initially respond to treatment, yet refractory clones subsequently develop owing to resistance mechanisms associated with cancer cell plasticity and heterogeneity. We used a chemical biology approach to identify protein targets in cancer cells exhibiting diverse driver mutations and representing models of tumor lineage plasticity and therapy resistance. An unbiased screen of a drug library was performed against cancer cells followed by synthesis of chemical analogs of the most effective drug.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!