Self-assembled branched DNA (bDNA) nanomaterials have exhibited their functionality in various biomedical and diagnostic applications. However, the anionic cellular membrane has restricted the movement of bDNA nanostructures. Recently, amphiphilic peptides have been investigated as cationic delivery agents for nucleic acids. Herein, we demonstrate a strategy for delivering functional bDNA nanomaterials into mammalian cells using self-assembled linear peptides. In this study, antisense oligonucleotides of vascular endothelial growth factor (VEGF) were inserted in the overhangs of bDNAs. Novel linear peptides have been synthesized and the peptide-bound bDNA complex formation was examined using various biophysical experiments. Interestingly, the W4R4-bound bDNAs were found to be exceptionally stable against DNase I compared to other complexes. The delivery of fluorescent-labeled bDNAs into the mammalian cells confirmed the potential of peptide transporters. Furthermore, the functional efficacy of the peptide-bound bDNAs has been examined through RT-PCR and western blot analysis. The observed results revealed that W4R4 peptides exhibited excellent internalization of antisense bDNAs and significantly suppressed (3- to 4-fold) the transcripts and translated product of VEGF compared to the control. In summary, the results highlight the potential use of peptide-based nanocarrier for delivering bDNA nanostructures to regulate the gene expression in cell lines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10424151 | PMC |
http://dx.doi.org/10.1016/j.omtn.2023.07.017 | DOI Listing |
Mol Microbiol
January 2025
Laboratório de Biologia Molecular de Patógenos (LBMP), Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil.
Leishmania presents a complex life cycle that involves both invertebrate and vertebrate hosts. By regulating gene expression, protein synthesis, and metabolism, the parasite can adapt to various environmental conditions. This regulation occurs mainly at the post-transcriptional level and may involve epitranscriptomic modifications of RNAs.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Obstetrics and Gynecology, Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Assisted Reproduction Unit, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
The developmental competence and epigenetic progression of oocytes gradually become dysregulated with increasing maternal age. However, the mechanisms underlying age-related epigenetic regulation in oocytes remain poorly understood. Zygote arrest proteins 1 and 2 (ZAR1/2) are two maternal factors with partially redundant roles in maintaining oocyte quality, mainly known by regulating mRNA stability.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Dermatology, Zhejiang Provincial Hospital of Dermatology, Huzhou, 313200, China.
Psoriasis is a long-lasting inflammatory skin condition characterized by excessive keratinocyte growth. Recent studies have confirmed abnormal regulation of microRNAs (miRNAs/miRs) in individuals with psoriasis. This study aimed to investigate the function and specific mechanism of action of miR-128a-3p in interleukin-22 (IL-22)-stimulated HaCaT cells.
View Article and Find Full Text PDFSci Rep
January 2025
Foot and Ankle Research and Innovation Lab (FARIL), Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Tendon injuries present significant medical, social, and economic challenges globally. Despite advancements in tendon injury repair techniques, outcomes remain suboptimal due to inferior tissue quality and functionality. Tissue engineering offers a promising avenue for tendon regeneration, with biocompatible scaffolds playing a crucial role.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Bioscience and Biotechnology, Banasthali Vidyapith, Niwai-Tonk, Rajasthan, 304022, India.
The prominence of circular RNAs (circRNAs) has surged in cancer research due to their distinctive properties and impact on cancer development. This review delves into the role of circRNAs in four key cancer types: colorectal cancer (CRC), gastric cancer (GC), liver cancer (HCC), and lung cancer (LUAD). The focus lies on their potential as cancer biomarkers and drug targets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!