[Glutamate and its ionotropic receptor agonists inhibit the response to acute hypoxia in carotid body of rats].

Sheng Li Xue Bao

The First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Neural Regeneration and Repairment, Life Sciences Research Center, Weihui 453100, China.

Published: August 2023

The purpose of this study was to investigate the effect of glutamate and its ionotropic receptor agonists on the response to acute hypoxia in rat carotid body in vitro. Briefly, after SD rats were anesthetized and decapitated, the bilateral carotid bifurcations were rapidly isolated. Then bifurcation was placed into a recording chamber perfused with 95% O-5% CO saturated Kreb's solution. The carotid body-sinus nerve complex was dissected, and the carotid sinus nerve discharge was recorded using a suction electrode. To detect the response of carotid body to acute hypoxia, the chamber was perfused with 5% O-5% CO-90% N saturated Kreb's solution for a period of 100 s at an interval of 15 min. To observe the effect of glutamate, ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor agonist AMPA or N-methyl-D-aspartate (NMDA) receptor agonist NMDA on the response to acute hypoxia in rat carotid body, the chamber was perfused with 5% O-5% CO-90% N saturated Kreb's solution containing the corresponding reagent. The results showed that glutamate (20 μmol/L), AMPA (5 μmol/L) or NMDA (10 μmol/L) inhibited the acute hypoxia-induced enhancement of carotid sinus nerve activity, and these inhibitory effects were dose-dependent. In summary, the activation of glutamate ionotropic receptors appears to exert an inhibitory effect on the response to acute hypoxia in carotid body of rats.

Download full-text PDF

Source

Publication Analysis

Top Keywords

acute hypoxia
20
carotid body
20
response acute
16
glutamate ionotropic
12
chamber perfused
12
saturated kreb's
12
kreb's solution
12
carotid
9
ionotropic receptor
8
receptor agonists
8

Similar Publications

Aldose Reductase: A Promising Therapeutic Target for High-Altitude Pulmonary Edema.

Int J Mol Sci

January 2025

Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, China.

The Qinghai-Tibet Plateau, famously known as the "Roof of the World", has witnessed a surge in individuals traveling or working there. However, a considerable percentage of these individuals may suffer from acute mountain sickness (AMS), with high-altitude pulmonary edema (HAPE) being a severe and potentially life-threatening manifestation. HAPE disrupts the balance of intrapulmonary tissue fluid, resulting in severe lung function impairment.

View Article and Find Full Text PDF

Expression and Regulation of Hypoxia-Inducible Factor Signalling in Acute Lung Inflammation.

Cells

December 2024

First Department of Critical Care Medicine, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece.

Hypoxia-inducible factors (HIFs) are central regulators of gene expression in response to oxygen deprivation, a common feature in critical illnesses. The significant burden that critical illnesses place on global healthcare systems highlights the need for a deeper understanding of underlying mechanisms and the development of innovative treatment strategies. Among critical illnesses, impaired lung function is frequently linked to hypoxic conditions.

View Article and Find Full Text PDF

Outcome of Ischemic Stroke at Six Months with Neuroglobin as a Marker.

Innov Clin Neurosci

December 2024

Drs. Ramli, Rusdi, Kurniawan, and Evelyn are with the Department of Neurology, Faculty of Medicine, Universitas Indonesia in Jakarta, Indonesia.

Prognostic markers can optimize the management of acute ischemic stroke (AIS). Neuroglobin (Ngb), which plays a role in intraneuronal oxygen transport and hypoxia resistance, is a potential prognostic marker in AIS. A cohort study was conducted on patients with AIS treated at Dr.

View Article and Find Full Text PDF

Background: Nitrofurantoin is a prevalent antibiotic used to treat urinary tract infections. Despite nitrofurantoin's general safety, it can cause serious side effects, including acute pulmonary toxicity, fulminant hepatitis, and severe systemic inflammatory responses, which may mimic conditions such as ischemia and infection. However, reports of acute systemic inflammatory response syndrome after nitrofurantoin ingestion are uncommon in medical literature.

View Article and Find Full Text PDF

Topic Importance: Accurate assessment of a patient's volume status is crucial in many conditions, informing decisions on fluid prescribing, vasoactive agents, and decongestive therapies. Determining a patient's volume status is challenging, due to limitations in examination and investigations and the complexities of fluid homeostasis in disease states. Point-of-care ultrasound (POCUS) is useful in assessing hemodynamic parameters related to volume status, fluid responsiveness, and fluid tolerance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!