Our knowledge of non-linear genetic effects on complex traits remains limited, in part, due to the modest power to detect such effects. While kernel-based tests offer a versatile approach to test for non-linear relationships between sets of genetic variants and traits, current approaches cannot be applied to Biobank-scale datasets containing hundreds of thousands of individuals. We propose, FastKAST, a kernel-based approach that can test for non-linear effects of a set of variants on a quantitative trait. FastKAST provides calibrated hypothesis tests while enabling analysis of Biobank-scale datasets with hundreds of thousands of unrelated individuals from a homogeneous population. We apply FastKAST to 53 quantitative traits measured across ≈ 300 K unrelated white British individuals in the UK Biobank to detect sets of variants with non-linear effects at genome-wide significance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10427662 | PMC |
http://dx.doi.org/10.1038/s41467-023-40346-2 | DOI Listing |
Cell Syst
January 2025
Department of Biochemistry & BioFrontiers Institute, University of Colorado, Boulder, CO 80303, USA. Electronic address:
The mitogen-activated protein kinase (MAPK) pathway integrates growth factor signaling through extracellular signal-regulated kinase (ERK) to control cell proliferation. To study ERK dynamics, many researchers use an ERK activity kinase translocation reporter (KTR). Our study reveals that this ERK KTR also partially senses cyclin-dependent kinase 2 (CDK2) activity, making it appear as if ERK activity rises as cells progress through the cell cycle.
View Article and Find Full Text PDFGenome-wide association studies (GWAS) have identified genetic variants robustly associated with asthma. A potential near-term clinical application is to calculate polygenic risk score (PRS) to improve disease risk prediction. The value of PRS, as part of numerous multi-source variables used to define asthma, remains unclear.
View Article and Find Full Text PDFGenetics
January 2025
School of BioSciences, The University of Melbourne, Royal Parade, Parkville, VIC 3010, Australia.
Genomic prediction applies to any agro- or ecologically relevant traits, with distinct ontologies and genetic architectures. Selecting the most appropriate model for the distribution of genetic effects and their associated allele frequencies in the training population is crucial. Linear regression models are often preferred for genomic prediction.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
Changes in winter precipitation accompanying emerging climate trends lead to a major carbon-climate feedback from Arctic tundra. However, the mechanisms driving the direction, magnitude, and form (CO and CH) of C fluxes and derived climate forcing (i.e.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Computer Science, Faculty of Sciences and Humanities Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia.
Impedance-based biosensing has emerged as a critical technology for high-sensitivity biomolecular detection, yet traditional approaches often rely on bulky, costly impedance analyzers, limiting their portability and usability in point-of-care applications. Addressing these limitations, this paper proposes an advanced biosensing system integrating a Silicon Nanowire Field-Effect Transistor (SiNW-FET) biosensor with a high-gain amplification circuit and a 1D Convolutional Neural Network (CNN) implemented on FPGA hardware. This attempt combines SiNW-FET biosensing technology with FPGA-implemented deep learning noise reduction, creating a compact system capable of real-time viral detection with minimal computational latency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!