A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhancement of milbemycins production by phosphopantetheinyl transferase and regulatory pathway engineering in Streptomyces bingchenggensis. | LitMetric

Milbemycins (MILs), a group of 16-membered insecticidal macrocylic lactones, are widely used as the biological pesticide and the precursors of semi-synthetic veterinary drugs. Polyketide synthases (PKSs), which require phosphopantetheinyl transferases (PPTases) to activate their ACP domains from apo forms to holo forms, catalyze the backbone biosynthesis of MILs. Here we found there was a complex phosphopantetheinylation network mediated by five putative PPTases in Streptomyces bingchenggensis. Repression mutants of PpA27 and PpA62 via CRISPRi both produced significantly lower yields of MILs than that of the control strain. Repression mutant of PpA68 led to abolishment of the pigment production. MILs production was significantly enhanced by PpA27 overexpression, while not by the overexpression of other PPTases. PpA27 was thus proved a dedicated post-translational enzyme to activate PKSs involved in the MILs biosynthesis. MILs titer was further enhanced by co-overexpression of PpA27 and MilR, the pathway‑specific transcriptional activator of MIL biosynthetic gene cluster. When PpA27 and MilR were co-overexpressed in the industrial S. bingchenggensis HMB, MILs production was increased by 40.5%. These results indicated that tuning the antibiotic biosynthetic pathway by co-engineering transcriptional regulation network and post-translational phosphopantetheinylation network is an effective strategy for antibiotic production improvement.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11274-023-03727-9DOI Listing

Publication Analysis

Top Keywords

streptomyces bingchenggensis
8
biosynthesis mils
8
phosphopantetheinylation network
8
mils production
8
ppa27 milr
8
mils
7
production
5
ppa27
5
enhancement milbemycins
4
milbemycins production
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!