A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Building a trustworthy AI differential diagnosis application for Crohn's disease and intestinal tuberculosis. | LitMetric

AI Article Synopsis

  • - The study focuses on improving the differentiation between Crohn's disease (CD) and intestinal tuberculosis (ITB) through a trustworthy AI application designed for endoscopic diagnosis, leveraging a dataset of 1271 patients.
  • - A workflow was developed that involved fine-tuning language models into an efficient TextCNN model, resulting in an impressive accuracy of 0.83 for distinguishing CD from ITB, with the debiased model also performing well under noisy conditions.
  • - The AI model identified 39 diagnostic features, 17 of which align with established clinical guidelines, demonstrating its effectiveness and reliability in aiding medical professionals with differential diagnoses.

Article Abstract

Background: Differentiating between Crohn's disease (CD) and intestinal tuberculosis (ITB) with endoscopy is challenging. We aim to perform more accurate endoscopic diagnosis between CD and ITB by building a trustworthy AI differential diagnosis application.

Methods: A total of 1271 electronic health record (EHR) patients who had undergone colonoscopies at Peking Union Medical College Hospital (PUMCH) and were clinically diagnosed with CD (n = 875) or ITB (n = 396) were used in this study. We build a workflow to make diagnoses with EHRs and mine differential diagnosis features; this involves finetuning the pretrained language models, distilling them into a light and efficient TextCNN model, interpreting the neural network and selecting differential attribution features, and then adopting manual feature checking and carrying out debias training.

Results: The accuracy of debiased TextCNN on differential diagnosis between CD and ITB is 0.83 (CR F1: 0.87, ITB F1: 0.77), which is the best among the baselines. On the noisy validation set, its accuracy was 0.70 (CR F1: 0.87, ITB: 0.69), which was significantly higher than that of models without debias. We also find that the debiased model more easily mines the diagnostically significant features. The debiased TextCNN unearthed 39 diagnostic features in the form of phrases, 17 of which were key diagnostic features recognized by the guidelines.

Conclusion: We build a trustworthy AI differential diagnosis application for differentiating between CD and ITB focusing on accuracy, interpretability and robustness. The classifiers perform well, and the features which had statistical significance were in agreement with clinical guidelines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10426047PMC
http://dx.doi.org/10.1186/s12911-023-02257-6DOI Listing

Publication Analysis

Top Keywords

differential diagnosis
20
trustworthy differential
12
building trustworthy
8
diagnosis application
8
crohn's disease
8
disease intestinal
8
intestinal tuberculosis
8
diagnosis itb
8
debiased textcnn
8
087 itb
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: