Human cochlear diffusion from the cerebrospinal fluid space with gadolinium contrast.

Mol Ther

Department of Otolaryngology, Head & Neck Surgery, Indiana University, Indianapolis. IN 46202, USA; Department of Neurological Surgery, Indiana University, Indianapolis, IN 46202, USA. Electronic address:

Published: September 2023

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10492018PMC
http://dx.doi.org/10.1016/j.ymthe.2023.08.001DOI Listing

Publication Analysis

Top Keywords

human cochlear
4
cochlear diffusion
4
diffusion cerebrospinal
4
cerebrospinal fluid
4
fluid space
4
space gadolinium
4
gadolinium contrast
4
human
1
diffusion
1
cerebrospinal
1

Similar Publications

Background and objective Viral infections caused by cytomegalovirus, lymphocytic choriomeningitis virus, varicella-zoster virus, herpes simplex type 1 and type 2, rubella, measles, rubeola, HIV, West Nile virus, Lassa virus, and mumps are known to be associated with hearing loss. There have been reports of inner ear involvement in coronavirus disease 2019 (COVID-19) patients but the extent and variations in cochlear involvement of symptomatic and asymptomatic patients has not been adequately described. This study aimed to evaluate the hearing status among symptomatic and asymptomatic COVID-19 patients to address the prospects for routine screening for hearing loss in COVID-19 patients.

View Article and Find Full Text PDF

Loss of neuronal activity facilitates surface accumulation of p75NTR and cell death in avian cochlear nucleus.

Neurosci Res

January 2025

Department of Cell Physiology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan. Electronic address:

Sensorineural hearing loss causes cell death in central auditory neurons, but molecular mechanisms of triggering this process are not fully understood. We report here that loss of afferent activity promotes cell death by facilitating proBDNF-p75NTR signals in cochlear nucleus of chicks around hatch. RNA-seq analyses revealed up-regulation of genes related to proBDNF-p75NTR-JNK signals as well as apoptosis at the nucleus within 24hours after unilateral cochlea deprivation.

View Article and Find Full Text PDF

Extent of genetic and epigenetic factor reprogramming via a single viral vector construct in deaf adult mice.

Hear Res

December 2024

Bionics Institute, East Melbourne, Victoria 3002, Australia; Department of Medical Bionics, The University of Melbourne, Fitzroy, Victoria 3065, Australia; Department of Surgery (Otolaryngology), University of Melbourne, The Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria 3002, Australia. Electronic address:

In the adult mammalian cochlea, hair cell loss is irreversible and causes deafness. The basic helix-loop transcription factor Atoh1 is essential for normal hair cell development in the embryonic ear. Over-expression of Atoh1 in the adult cochlea by gene therapy can convert supporting cells (cells that underlie hair cells) into a hair cell lineage.

View Article and Find Full Text PDF

Aims And Objectives: The study aimed to compare the auditory perception status of children from different socioeconomic backgrounds, specifically urban versus rural. It also examined the correlation between outcome measures and the frequency of auditory verbal therapy sessions attended, as well as the impact of continuous electric analog stimulation on the age of implantation.

Material And Methods: A retrospective cohort study was carried out on 30 children who have received unilateral cochlear implantation in rural versus urban backgrounds.

View Article and Find Full Text PDF

Assembly of actin-based stereocilia is critical for cochlear hair cells to detect sound. To tune their mechanosensivity, stereocilia form bundles composed of graded rows of ascending height, necessitating the precise control of actin polymerization. Myosin 15 (MYO15A) drives hair bundle development by delivering critical proteins to growing stereocilia that regulate actin polymerization via an unknown mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!