New shoots from tea plants (Camellia sinensis) are changed into finished tea after the process, which endows the products with a characteristic flavor. Tea quality is reflected in all aspects, from new shoots to the finished tea that are affected by cultivar, cultivation condition, harvest season, manufacturing methods, and quality of fresh tea leaves. Lipids are hydrophobic metabolites connected with tea flavor quality formation. Herein, we emphasize that the lipids composition in preharvest tea leaves is crucial for materials quality and hence tea flavor. The characterization of lipids in preharvest tea leaves provides a reference to obtain better tea quality. Lipids transformation in postharvest stages of tea leaves differs from varieties of tea types, and lipid oxidations functions in the tea flavor formation. A comprehensive overview of the lipids in tea leaves of preharvest and postharvest stages is necessary to improve tea quality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2023.137071 | DOI Listing |
Front Microbiol
January 2025
School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China.
Bud blight caused by is a serious disease affecting tea plants and causing severe damage to production output and quality. Phages play an important role in controlling the development of bacterial diseases in plants. Previous studies have shown that the tolerance of phage-treated tea plants to bud blight was notably greater compared with that of the control group.
View Article and Find Full Text PDFFood Res Int
February 2025
College of Horticulture, Northwest Agriculture and Forest University, Yangling, Shaanxi 712100, China. Electronic address:
Green is no longer the only color used to describe tea leaves. As tea plants with different leaf colors-white, yellow, and purple-yield significant economic benefits, scholars are growing increasingly curious about whether these differently colored leaves possess unique aromatic characteristics. Headspace solid-phase microextraction (HS-SPME) combined with GC-MS was used to analyze the volatile metabolites of buds and leaves from 7 white-leaf tea plants, 9 yellow-leaf tea plants, 4 purple-leaf tea plants, and 7 normal (green) tea plants.
View Article and Find Full Text PDFFood Res Int
February 2025
State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China. Electronic address:
This study aimed to investigate the effect of the combination of shaking and various anaerobic treatments on the aroma quality of gabaron oolong tea (GAOT) by chemical and sensory evaluation. The results showed that elevated anaerobic treatment harmed GAOT aroma, emphasizing undesirable attributes such as earthy, fatty, etc. A total of 85 volatiles were identified by gas chromatography-ion mobility spectrometry (GC-IMS), and the relationship between aroma attributes and volatiles were revealed by PLS regression projection and correlation network.
View Article and Find Full Text PDFFood Res Int
February 2025
Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China. Electronic address:
Tea is a widely consumed beverage worldwide due to its rich secondary metabolites. Gallotanin: 1-O-galloyl-6-O-luteoyl-α-D-glucose (GLAG) has strong antioxidant activity and good resistance to a wide range of bacteria and malaria. Despite its potential, there have been few reports on GLAG in plants.
View Article and Find Full Text PDFFood Res Int
February 2025
Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, PR China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, PR China. Electronic address:
Perchlorate was reported to be taken up by tea (Camellia sinensis L.) plants and mainly stored in leaves. However, the change of contents in perchlorate in fresh tea leaf-made tea and tea infusion remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!