A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of Structural Elements of Heparin-Mimicking Polymers on Vascular Cell Distribution and Functions: Chemically Homogeneous or Heterogeneous? | LitMetric

Effect of Structural Elements of Heparin-Mimicking Polymers on Vascular Cell Distribution and Functions: Chemically Homogeneous or Heterogeneous?

ACS Biomater Sci Eng

State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China.

Published: September 2023

Heparin-mimicking polymers (HMPs) are artificially synthesized alternatives to heparin with comparable regulatory effects on protein adsorption and cell behavior. By introducing two major structural elements of HMPs (sulfonate- and glyco-containing units) to different areas of material surfaces, heterogeneous surfaces patterned with different HMPs and homogeneous surfaces patterned with the same HMPs can be obtained. In this work, heterogeneous HMP-patterned poly(dimethylsiloxane) (PDMS) surfaces with sulfonate-containing polySS (pS) and glyco-containing polyMAG (pM) distributed in circular patterns (with a diameter of 300 μm) were prepared (S-M and M-S). Specifically, pS and pM were distributed inside and outside the circles on S-M, respectively, and exchanged their distribution on M-S. Homogeneous HMP-patterned silicone surfaces (SM-SM) where sulfonate- and glyco-containing poly(SS--MAG) (pSM) were distributed uniformly were prepared. Vascular cells showed interestingly different behaviors between chemically homogeneous and heterogeneous surfaces. They tended to grow in the sulfonate-modified area on S-M and M-S and were distributed uniformly on SM-SM. Compared with M-S, S-M showed a better promoting effect on the growth of vascular cells. Among all the samples, SM-SM exhibited the highest proliferation density and an optimum spreading state of vascular cells, as well as the highest human umbilical vein endothelial cell (HUVEC) viability (∼99%) and relatively low human umbilical vein smooth muscle cell (HUVSMC) viability (∼72%). By heterogeneous or homogeneous patterning with different structural elements of HMPs, the modified silicone surfaces spatially guided vascular cell distribution and functions. This strategy provides a new surface engineering approach to the study of cell-HMP interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.3c00860DOI Listing

Publication Analysis

Top Keywords

structural elements
12
vascular cells
12
heparin-mimicking polymers
8
vascular cell
8
cell distribution
8
distribution functions
8
chemically homogeneous
8
elements hmps
8
sulfonate- glyco-containing
8
heterogeneous surfaces
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!