Proteins often undergo structural perturbations upon binding to other proteins or ligands or when they are subjected to environmental changes. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) can be used to explore conformational changes in proteins by examining differences in the rate of deuterium incorporation in different contexts. To determine deuterium incorporation rates, HDX-MS measurements are typically made over a time course. Recently introduced methods show that incorporating the temporal dimension into the statistical analysis improves power and interpretation. However, these approaches have technical assumptions that hinder their flexibility. Here, we propose a more flexible methodology by reframing these methods in a Bayesian framework. Our proposed framework has improved algorithmic stability, allows us to perform uncertainty quantification, and can calculate statistical quantities that are inaccessible to other approaches. We demonstrate the general applicability of the method by showing it can perform rigorous model selection on a spike-in HDX-MS experiment, improved interpretation in an epitope mapping experiment, and increased sensitivity in a small molecule case-study. Bayesian analysis of an HDX experiment with an antibody dimer bound to an E3 ubiquitin ligase identifies at least two interaction interfaces where previous methods obtained confounding results due to the complexities of conformational changes on binding. Our findings are consistent with the cocrystal structure of these proteins, demonstrating a bayesian approach can identify important binding epitopes from HDX data. We also generate HDX-MS data of the bromodomain-containing protein BRD4 in complex with GSK1210151A to demonstrate the increased sensitivity of adopting a Bayesian approach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10476270 | PMC |
http://dx.doi.org/10.1021/acs.jproteome.3c00297 | DOI Listing |
Mol Cell Proteomics
January 2025
Broad Institute of MIT & Harvard, Cambridge, MA. Electronic address:
Despite the widespread use of MS for hydrogen/deuterium exchange measurements, no systematic, large-scale study has been conducted to compare the observed exchange rates in protein-derived, unstructured peptides measured by MS to the predicted exchange rates calculated from NMR-derived values and how neighboring residues and post-translational modifications influence those exchange rates. In this study, we sought to test the accuracy of predicted values by performing hydrogen exchange measurements on whole cell digests to generate an unbiased dataset of 563 unique peptides derived from naturally-occurring protein sequences. A remarkable 97% of observed exchange rates of peptides are within two-fold of predicted values.
View Article and Find Full Text PDFBlood Adv
January 2025
KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium.
Allosteric regulation of ADAMTS13 (A Disintegrin And Metalloproteinase with ThromboSpondin type-1 motif, member 13) activity involves an interaction between its Spacer (S) and CUB1-2 domains to keep the enzyme in a closed, latent conformation. Monoclonal antibodies (mAb) uncouple the S-CUB interaction to open the ADAMTS13 conformation and thereby disrupt the global enzyme latency. The molecular mechanism behind this mAb-induced allostery remains poorly understood.
View Article and Find Full Text PDFJ Struct Biol
January 2025
Center of Structural Biology, Vanderbilt University, Nashville, TN, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, USA; Institute for Drug Discovery, Institute for Computer Science, Wilhelm Ostwald Institute for Physical and Theoretical Chemistry, University Leipzig, Leipzig, Germany; Center for Scalable Data Analytics and Artificial Intelligence ScaDS.AI and School of Embedded Composite Artificial Intelligence SECAI, Dresden/Leipzig, Germany; Department of Pharmacology, Institute of Chemical Biology, Center for Applied Artificial Intelligence in Protein Dynamics, Vanderbilt University, Nashville, TN, USA. Electronic address:
High-throughput characterization of antibody-antigen complexes at the atomic level is critical for understanding antibody function enabling therapeutic development. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) enables rapid epitope mapping, but its data are too sparse for independent structure determination. In this study, we introduce RosettaHDX, a hybrid method that combines computational docking with differential HDX-MS data to enhance the accuracy of antibody-antigen complex models beyond what either method can achieve individually.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States.
ConspectusProtein higher-order structure (HOS) is key to biological function because the mechanisms of protein machinery are encoded in protein three-dimensional structures. Mass spectrometry (MS)-based protein footprinting is advancing protein structure characterization by mapping solvent-accessible regions of proteins and changes in H-bonding, thereby providing higher order structural information. Footprinting provides insights into protein dynamics, conformational changes, and interactions, and when conducted in a differential way, can readily reveal those regions that undergo conformational change in response to perturbations such as ligand binding, mutation, thermal stress, or aggregation.
View Article and Find Full Text PDFJ Thromb Haemost
January 2025
Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA. Electronic address:
Background: Genetically determined amino acid substitutions in the platelet adhesive A1 domain alter von Willebrand factor's platelet agglutination competence resulting in both gain- (Type 2B) and loss-of-function (Type 2M) phenotypes of Von Willebrand disease. Prior studies of variants in both phenotypes revealed defects in secondary structure that altered stability and folding of the domain. An intriguing observation was that loss of function arose from both misfolding of A1 and, in a few cases, hyper-stabilization of the native structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!