Equilibration dynamics of hot oxygen atoms following the dissociation of O on Pd(100) and Pd(111) surfaces are investigated by molecular dynamics simulations based on a scalable neural network potential enabling first-principles description of the interaction of O and O interacting with variable Pd supercells. By analyzing hundreds of trajectories with appropriate initial sampling, the measured distance distribution of equilibrated atom pairs on Pd(111) is well reproduced. However, our results on Pd(100) suggest that the ballistic motion of hot atoms predicted previously is a rare event under ideal conditions, while initial molecular orientation and surface thermal fluctuation could significantly affect the overall postdissociation dynamics. On both surfaces, dissociated hyperthermal oxygen atoms primarily locate their nascent positions and experience a similar random walk motion nearby.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.3c01708 | DOI Listing |
J Chem Inf Model
January 2025
CEITEC─Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic.
All-atom molecular dynamics simulations are powerful tools for studying cell membranes and their interactions with proteins and other molecules. However, these processes occur on time scales determined by the diffusion rate of phospholipids, which are challenging to achieve in all-atom models. Here, we present a new all-atom model that accelerates lipid diffusion by splitting phospholipid molecules into head and tail groups.
View Article and Find Full Text PDFJ Biomol Struct Dyn
January 2025
Department of Studies in Physics, University of Mysore, Mysuru, India.
Sci Rep
December 2024
Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Strasse 40, 34132, Kassel, Germany.
The ultrafast ionic dynamics in solids induced by intense femtosecond laser excitation are controlled by two fundamentally different yet interrelated phenomena. First, the substantial generation of hot electron-hole pairs by the laser pulse modifies the interatomic bonding strength and characteristics, inducing nonthermal ionic motion. Second, incoherent electron-ion collisions facilitate thermal equilibration between electrons and ions, achieving a uniform temperature on a picosecond timescale.
View Article and Find Full Text PDFLangmuir
December 2024
Department of Biomedical and Chemical Engineering and the Bioinspired Institute, Syracuse University, Syracuse, New York 13244, United States.
Copolymer nanovesicles are used extensively in chemical processes and biomedical applications in which they are subjected to dynamic flow environments. Flow-induced vesicle deformation, fragmentation, and reorganization modify the energetic (e.g.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 39002, India.
Spurred by the latest developments and growing utilization of zero-dimensional (0D) drug delivery and drug sensors, this investigation examines the possibilities of the 0D C fullerene for drug delivery and the detection of the anticancer drug chlormethine (CHL), the overabundance of which poses a significant threat to living organisms. This study employs density functional theory and ab initio molecular dynamics (AIMD) simulations (AIMD) to evaluate and gain insights into the interaction mechanisms between pristine C fullerene, metal-metalloid (MM)-modified C fullerene (with Al, Fe, and B), and the anticancer drug CHL. It is observed that in the gas phase, the CHL drug molecule adsorbs onto the fullerenes in the following order: B-C > Fe-C > Al-C > C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!