Camouflage technology has attracted growing interest in many thermal applications. In particular, high-temperature infrared (IR) camouflage is crucial to the effective concealment of high-temperature objects but remains a challenging issue, as the thermal radiation of an object is proportional to the fourth power of temperature. Here, we proposed a coating to demonstrate high-temperature IR camouflage with efficient thermal management. This coating is a combination of hyperbolic metamaterial (HMM), gradient epsilon near zero (G-ENZ) material, and polymer. HMM makes the coating transparent in the visible range (300-700 nm) and highly reflective in the IR region, so it can serve as a thermal camouflage in the IR. G-ENZ and polymer support BE mode (at higher angles ∼50° to 90° in the 11-14 µm atmospheric window) and vibrational absorption band (in 5-8 µm non-atmospheric for all angles), respectively. So it is possible to achieve efficient thermal management through radiative cooling. We calculate the temperature of the object's surface, considering the emissivity characteristics of the coating for different heating temperatures. A combination of silica aerogel and coating can significantly reduce the surface temperature from 2000 K to 750 K. The proposed coating can also be used in the visible transparent radiative cooling due to high transmission in the visible, high reflection in the near-IR (NIR), and highly directional emissivity in the atmospheric window at higher angles, and can therefore potentially be used as a smart window in buildings and vehicles. Finally, we discuss one more potential future application of such a multifunctional coating in water condensation and purification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.494539 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
Maintaining human body temperature in both high and low-temperature environments is fundamental to human survival, necessitating high-performance thermal insulation materials to prevent heat exchange with the external environment. Currently, most fibrous thermal insulation materials are characterized by large weight, suboptimal thermal insulation, and inferior mechanical and waterproof performance, thereby limiting their effectiveness in providing thermal protection for the human body. In this study, lightweight, waterproof, mechanically robust, and thermal insulating polyamide-imide (PAI) grooved micro/nanofibrous aerogels were efficiently and directly assembled by electrospinning.
View Article and Find Full Text PDFLangmuir
January 2025
Ningbo Key Lab of Polymer Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 315211 Ningbo, P. R. China.
Solar-driven desalination technology is currently an important way to obtain freshwater resources. Significantly, porous materials are used as substrate materials of interface solar evaporator, and their specific impact of water transport property and thermal management during evaporation is worth exploring. In this paper, poly(vinyl alcohol) (PVA) sponges were prepared by a chemical foaming method, adjusted the PVA polymerization degree, and formaldehyde-hydroxyl ratio to regulate the pore size, and polypyrrole (PPy) was grown in situ on the surface skeleton of PVA sponge to construct a new interfacial solar evaporator (PPy/PVA) with different pore structures.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Massachusetts Institute of Technology, Research Laboratory of Electronics, Cambridge, Massachusetts 02139, USA.
Classical transport of electrons and holes in nanoscale devices leads to heating that severely limits performance, reliability, and efficiency. In contrast, recent theory suggests that interband quantum tunneling and subsequent thermalization of carriers with the lattice results in local cooling of devices. However, internal cooling in nanoscale devices is largely unexplored.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore.
Electrochemical water splitting is a promising method for generating green hydrogen gas, offering a sustainable approach to addressing global energy challenges. However, the sluggish kinetics of the anodic oxygen evolution reaction (OER) poses a great obstacle to its practical application. Recently, increasing attention has been focused on introducing various external stimuli to modify the OER process.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Mechanical Engineering, SBM College of Engineering & Technology, Dindigul, 624 005, Tamil Nadu, India.
To mitigate the exhaustion of hydrocarbon fuels and the rise of pollutants, one can use biofuels in diesel engines for power generation. This study examines the possibility of enhancing the performance and reducing the pollutions of a compressed ignition engine using methyl ester made from cotton silk seed oil. This study aimed to assess the energy, energy efficiency, and emissions (3E) of the Kirloskar engine operating at 1800 rpm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!