In the past 80 years, fluoropolymers have found broad applications in both industrial and academic settings, owing to their unique physicochemical properties. Copolymerizations of fluoroalkene feedstocks present an important avenue to obtain high-performance materials by merging intrinsic attributes of fluorocarbons and great versatility of comonomers. Recently, while massive investigations have disclosed the great potentials of precisely synthesized polymers, researchers have made considerable efforts to approach well-defined fluorinated copolymers. This minireview discusses challenges in controlled radical copolymerizations (CRCPs) of fluoroalkenes and provides a concise perspective on recent progress in CRCPs of fluoroalkenes (e.g., tetrafluoroethylene, chlorotrifluoroethylene, hexafluoropropene, perfluoroalkyl vinyl ethers) with non-fluorinated vinyl comonomers, which have enabled on-demand preparations of various main-chain fluoropolymers with predefined molar masses, low dispersities, as well as regulable chemical compositions and sequences. The synthetic advantages of CRCPs will promote controlled and facile access to customized fluoropolymers for high-tech applications such as batteries, coatings and so on.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202310636 | DOI Listing |
Materials (Basel)
December 2024
Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
Acid-fracturing technology has been applied to form pathways between deep oil/gas resources and oil production pipelines. The acid fracturing fluid is required to have special slow-release performance, with no acidity at low temperatures, while steadily generating acid at high temperatures underground. At present, commercial acid systems in oilfields present problems such as the uncontrollable release effect, high costs, and significant pollution.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States.
Aryl triflates make up a class of aryl electrophiles that are available in a single step from the corresponding phenol. Despite the known reactivity of nickel complexes for aryl C-O bond activation of phenol derivatives, nickel-catalyzed cross-electrophile coupling using aryl triflates has proven challenging. Herein, we report a method to form C(sp)-C(sp) bonds by coupling aryl triflates with alkyl bromides and chlorides using phenanthroline (phen) or pyridine-2,6-bis(-cyanocarboxamidine) (PyBCam)-ligated nickel catalysts.
View Article and Find Full Text PDFHealthcare (Basel)
December 2024
Department of Health Sciences, University of Burgos, 09001 Burgos, Spain.
Background/aims: This cross-sectional study investigates body composition and strength in female breast cancer survivors, focusing on the effects of radical mastectomy and the presence of upper extremity lymphoedema. The main objective was to understand body composition, volumetry, and strength, as well as response to strength training in female breast cancer survivors.
Methods: Twenty-three women (aged 42-74 years old) with radical mastectomy in the last five years were assessed by measuring body composition (weight, water percentage, fat, muscle, and lean mass), maximal strength, perimeters, and brachial volumes.
J Am Chem Soc
January 2025
State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
The cycloaddition of aziridines with unsaturated compounds is a valuable method for synthesizing nitrogen heterocycles. However, this process is predominantly substrate-controlled, posing significant challenges in regulating the regioselectivity of the C-N bond cleavage. In this study, we report a nickel-catalyzed dynamic kinetic activation strategy that enables catalyst-controlled activation of aziridines.
View Article and Find Full Text PDFChemMedChem
January 2025
Lomonosov Moscow State University: Moskovskij gosudarstvennyj universitet imeni M V Lomonosova, Chemistry, RUSSIAN FEDERATION.
Light induced release of cisplatin from Pt(IV) prodrugs is a promising tool for precise spatiotemporal control over the antiproliferative activity of Pt-based chemotherapeutic drugs. A combination of light-controlled chemotherapy (PACT) and photodynamic therapy (PDT) in one molecule has the potential to overcome crucial drawbacks of both Pt-based chemotherapy and PDT via a synergetic effect. Herein we report green-light-activated Pt(IV) prodrug GreenPt with BODIPY-based photosentitizer in the axial position with an incredible high light response and singlet oxygen generation ability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!