AI Article Synopsis

  • The study details the preparation of corannulene, a curved polycyclic aromatic hydrocarbon, using mechanochemical synthesis, achieving significant yields.
  • Initially, a mixer mill is used for small-scale synthesis, while planetary mills are effective for larger productions, yielding up to 15 g per milling cycle.
  • A total of 98 g of corannulene is produced, demonstrating the promising application of mechanochemistry for synthesizing complex nanocarbons like fullerenes and carbon nanotubes.

Article Abstract

Corannulene, a curved polycyclic aromatic hydrocarbon, is prepared in a multigram scale through mechanochemical synthesis. Initially, a mixer mill approach is examined and found to be suitable for a gram scale synthesis. For larger scales, planetary mills are used. For instance, 15 g of corannulene could be obtained in a single milling cycle with an isolated yield of 90 %. The yields are lower when the jar rotation rate is lower or higher than 400 revolutions per minute (rpm). Cumulatively, 98 g of corannulene is produced through the ball milling-based grinding techniques. These results indicate the future potential of mechanochemistry in the rational chemical synthesis of highly curved nanocarbons such as fullerenes and carbon nanotubes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.202301087DOI Listing

Publication Analysis

Top Keywords

mechanochemical synthesis
8
curved polycyclic
8
polycyclic aromatic
8
aromatic hydrocarbon
8
corannulene
4
synthesis corannulene
4
corannulene scalable
4
scalable efficient
4
efficient preparation
4
preparation curved
4

Similar Publications

Solid-state batteries currently receive ample attention due to their potential to outperform lithium-ion batteries in terms of energy density when featuring next-generation anodes such as lithium metal or silicon. One key remaining challenge is identifying solid electrolytes that combine high ionic conductivity with stability in contact with the highly reducing potentials of next-generation anodes. Fully reduced electrolytes, based on irreducible anions, offer a promising solution by avoiding electrolyte decomposition altogether.

View Article and Find Full Text PDF

Mechanochemical Synthesis of Molecular Chemoreceptors.

ACS Omega

December 2024

Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland.

The design of environmentally friendly methods for synthesizing molecular receptors is an expanding area within applied organic chemistry. This work systematically summarizes advances in the mechanochemical synthesis of molecular chemoreceptors. It discusses key achievements related to the synthesis of chemoreceptors containing azine, Schiff base, thiosemicarbazone, hydrazone, rhodamine 6G, imide, or amide moieties.

View Article and Find Full Text PDF

Hydrochlorothiazide (HTZ) is a thiazide-type diuretic drug approved by the FDA in 1959 for treatment of hypertension and peripheral edema and has been used since. HTZ exhibits low solubility and low permeability, leading to variable oral bioavailability and limited intestinal drug permeability. For this reason, several attempts to improve HTZ physicochemical properties have been made during the past decades.

View Article and Find Full Text PDF

FeS-based nanocomposites: A promising approach for sustainable environmental remediation - Focus on adsorption and photocatalysis - A review.

J Environ Manage

December 2024

Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Poland; School of Civil, Environmental, and Architectural Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea. Electronic address:

Population expansion, industrialization, urban development, and climate changes increased the water crisis in terms of drinking water availability. Among the various nanomaterials for nanoremediation towards water treatment, FeS-based nanocomposites have emerged as promising candidates in the adsorptive and photocatalytic removal of contaminants. This paper, therefore, evaluates the potential of FeS-based nanocomposites for environmental applications, more specifically the combined use of adsorption and photocatalysis.

View Article and Find Full Text PDF

The First Decade of Colloidal Lead Halide Perovskite Quantum Dots (in our Laboratory).

Chimia (Aarau)

December 2024

Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, CH-8093 Zürich.

Ten years after the discovery of colloidal lead halide perovskite nanocrystals (LHP NCs), the field has witnessed substantial progress in synthetic methods, understanding of their surface chemistry and unique optical properties, precise control over NC size, shape, and composition. Ligand engineering, particularly with cationic and zwitterionic head groups, massively enhanced NC stability, compatibility with organic solvents, and photoluminescence efficiency. These breakthroughs allowed for the self-assembly of monodisperse NCs into complex long-range ordered superlattices and enabled the exploration of collective optical phenomena, such as superfluorescence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!