Earth abundant transition metal oxide (EATMO)-based bifunctional catalysts for overall water splitting are highly desirable, but their performance is far from satisfactory due to low intrinsic activities of EATMOs toward electrocatalysis of both oxygen and hydrogen evolution reactions and poor electron transfer and transport capabilities. A three-dimensional (3-D) Ni-foam-supported NiCoO@CoO nanowire-on-nanosheet heterostructured array with rich oxygen vacancies has been synthesized, showing OER activity superior to most reported catalysts and even much higher than Ru and Ir-based ones and HER activity among the highest reported for non-noble-metal-based catalysts. The excellent activities are ascribed to the highly dense, ultrathin nanowire arrays epitaxially grown on an interconnected layered nanosheet array greatly facilitating electron transfer and providing numerous electrochemically accessible active sites and the high content of oxygen vacancies on nanowires greatly promoting OER and HER. When adopted as bifunctional electrodes for overall water splitting, this heterostructure shows an overvoltage (at 10 mA cm) lower than most reported electrolyzers and high stability. This work not only creates a 3-D EATMO-based integrated heterostructure as a low-cost, highly efficient bifunctional catalytic electrode for water splitting, but also provides a novel strategy to use unique heteronanostructures with rich surface defects for synergistically enhancing electrocatalytic activities.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3nr02302hDOI Listing

Publication Analysis

Top Keywords

water splitting
16
oxygen vacancies
12
nicoo@coo nanowire-on-nanosheet
8
rich oxygen
8
bifunctional catalytic
8
electrodes water
8
electron transfer
8
three-dimensional foam
4
foam supported
4
supported nicoo@coo
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!