The presence of rattlers in the host-guest structure has sparked great interest in the field of thermoelectrics, as it allows for the suppression of thermal transport in materials through vigorous anharmonic vibrations. This work predicts a ternary half-Heusler compound, LiAgTe, with good thermoelectric properties and high-temperature stability, which possesses a host-guest structure. Furthermore, it provides a detailed analysis of the role of rattlers in the transport process. By microscopically exploring rattlers, we have revealed that rattlers (Ag atoms), while suppressing the thermal transport properties of the host framework, provide a significant enhancement of the electronic transport capability through the provision of nearly free weakly bound electrons. Using self-consistent phonon theory combined with compressive sensing lattice dynamics method, we captured the exact lattice thermal conductivity considering quartic anharmonicity and four-phonon scattering, and obtained the electronic transport parameters through the calculation of , which includes full anisotropic acoustic deformation potential scattering, polar optical phonon scattering, and ionized impurity scattering. We systematically dissected the role of rattlers in the host-guest structure by combining methods such as electron local function, Bader charge density, and Vibration visualization. The anharmonic vibrations of rattlers enhance the temperature response of scattering, resulting in rapid deterioration of thermal transport at high temperatures. Moreover, the extended d-orbital electrons of the rattlers, together with the p-orbital electrons of the Te atom in the host framework, result in the coexistence of maximum degeneracy and high dispersion bands in the valence band, which greatly enhances the electronic transport properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3cp02194g | DOI Listing |
ACS Appl Mater Interfaces
January 2025
CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India.
In the past decade, significant efforts have been made to develop efficient half-Heusler (HH) based thermoelectric (TE) materials. However, their practical applications remain limited due to various challenges occurring during the fabrication of TE devices, particularly the development of stable contacts with low interfacial resistance. In this study, we have made an effort to explore a stable contact material with low interfacial resistance for an n-type TiCoSb-based TE material, specifically TiNbCoSbBi as a proof of concept, using a straightforward facile synthesis route of spark plasma sintering.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Physics, University of Rajshahi, Rajshahi, 6205, Bangladesh.
The present study focuses on the ground state mechanical, acoustic, thermodynamic and electronic transport properties of NaSbS polymorphs using the density functional theory (DFT) and semi-classical Boltzmann transport theory. The mechanical stability of the polymorphs is affirmed by the calculated elastic tensor. The calculated elastic properties asserted that all the polymorphs exhibit soft, brittle, anisotropic nature containing dominant covalent bonding.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, Xidian University, Xi'an 710071, PR China.
Commercial SnO nanocrystals used for producing electron transporting layers (ETLs) of perovskite solar cells (PSC) are prone to aggregation at room temperature and contain many structural defects. Herein, we report that the LiOH additive can simultaneously delay the aggregation and donate the beneficial aging effect to SnO nanocrystals. The resulting SnO ETLs show the desired characteristics, including a broadened absorption range, reduced defects, improved transporting properties, and decreased work function.
View Article and Find Full Text PDFACS Nano
January 2025
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
Radiative cooling is an emerging zero-energy-consumption technology for human body cooling in outdoor scenarios during hot seasons. However, existing radiative cooling textiles are limited by low intrinsic cooling power, high hydrophobicity, and heat-insulating properties, which seriously impede a satisfying cooling effect, perspiration-wicking, and heat dissipation, thus limiting human thermal comfort in practical situations. Here, we developed a radiative cooling meta-fabric that was integrated with high perspiration-wicking and thermal conduction capacity.
View Article and Find Full Text PDFLangmuir
January 2025
School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, P.R. China.
Thermal oxidation has a significant effect on the durability of bitumen composites reinforced with carbon nanomaterials. However, the mechanisms of aging resistance and the effect of aging on the chemical properties, morphology, micromechanical properties, and rheology of bitumen with carbon nanomaterials are still unclear. This study investigated the mechanisms of aging resistance underlying the synergistic effects of graphene and carbon nanotubes (CNTs) on the durability of bitumen composites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!