Background: Frequent exacerbation (FE) and infrequent exacerbation (IE) are two phenotypes of chronic obstructive pulmonary disease (COPD), of which FE is associated with a higher incidence of exacerbation and a serious threat to human health. Because the pathogenesis mechanisms of FE are unclear, this study aims to identify FE-related proteins in the plasma via proteomics for use as predictive, diagnostic, and therapeutic biomarkers of COPD.
Methods: A cross-sectional study was conducted in which plasma protein profiles were analyzed in COPD patients at stable stage, and differentially expressed proteins (DEPs) were screened out between the FE and IE patients. FE-related DEPs were identified using data-independent acquisition-based proteomics and bioinformatics analyses. In addition, FE-related candidates were verified by enzyme-linked immunosorbent assay.
Results: In this study, 47 DEPs were screened out between the FE and IE groups, including 20 upregulated and 27 downregulated proteins. Key biological functions (eg, neutrophil degranulation, extracellular exosome, protein homodimerization activity) and signaling pathways (eg, arginine and proline metabolism) were enriched in association with the FE phenotype. Receiver operating characteristic (ROC) analysis of the 11 combined DEPs revealed an area under the curve of 0.985 ( <0.05) for discriminating FE from IE. Moreover, correlation and ROC curve analyses indicated that creatine kinase, M-type (CKM) and fat storage-inducing transmembrane protein 1 (FITM1) might be clinically significant in patients with the FE phenotype. In addition, plasma expression levels of CKM and FITM1 were validated to be significantly decreased in the FE group compared with the IE group (CKM: <0.01; FITM1: <0.05).
Conclusion: In this study, novel insights into COPD pathogenesis were provided by investigating and comparing plasma protein profiles between the FE and IE patients. CKM, FITM1, and a combinative biomarker panel may serve as useful tools for assisting in the precision diagnosis and effective treatment of the FE phenotype of COPD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10423573 | PMC |
http://dx.doi.org/10.2147/COPD.S408361 | DOI Listing |
Plasma protein levels provide important insights into human disease, yet a comprehensive assessment of plasma proteomics across organs is lacking. Using large-scale multimodal data from the UK Biobank, we integrated plasma proteomics with organ imaging to map their phenotypic and genetic links, analyzing 2,923 proteins and 1,051 imaging traits across multiple organs. We uncovered 5,067 phenotypic protein-imaging associations, identifying both organ-specific and organ-shared proteomic relations, along with their enriched protein-protein interaction networks and biological pathways.
View Article and Find Full Text PDFPhysical activity (PA), including sedentary behavior, is associated with many diseases, including Alzheimer's disease and all-cause dementia. However, the specific biological mechanisms through which PA protects against disease are not entirely understood. To address this knowledge gap, we first assessed the conventional observational associations of three self-reported and three device-based PA measures with circulating levels of 2,911 plasma proteins measured in the UK Biobank (n =39,160) and assessed functional enrichment of identified proteins.
View Article and Find Full Text PDFJ Prev Alzheimers Dis
February 2025
Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA. Electronic address:
Background: Protein abundance levels, sensitive to both physiological changes and external interventions, are useful for assessing the Alzheimer's disease (AD) risk and treatment efficacy. However, identifying proteomic prognostic markers for AD is challenging by their high dimensionality and inherent correlations.
Methods: Our study analyzed 1128 plasma proteins, measured by the SOMAscan platform, from 858 participants 55 years and older (mean age 63 years, 52.
J Immunother Cancer
January 2025
Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
Immune checkpoint inhibitor (ICI) therapy is a cornerstone treatment for many cancers, but it can induce severe immunotoxicity, including acute interstitial nephritis (AIN). Currently, kidney biopsy is required to differentiate ICI-AIN from other causes of acute kidney injury (AKI). However, this invasive approach can lead to morbidity, delayed glucocorticoid treatment for patients with AIN, and unnecessarily prolonged suspension of ICI therapy in non-AIN patients.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
Alzheimer's disease (AD) is the leading cause of dementia among the elderly, yet effective treatments remain elusive. Total saikosaponins (TSS), the primary bioactive components in , have shown promising therapeutic effects against AD in previous studies. : To delve deeper into the mechanisms underlying the therapeutic role of TSS in AD, we investigated its neuroprotective effects and associated molecular mechanisms in APP/PS1 mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!