Background: Ultrasound is widely used for image-guided therapy (IGT) in many surgical fields, thanks to its various advantages, such as portability, lack of radiation and real-time imaging. This article presents the first attempt to utilize multiple deep learning algorithms in distal humeral cartilage segmentation for dynamic, volumetric ultrasound images employed in minimally invasive surgery.
Methods: The dataset, consisting 5,321 ultrasound images were collected from 12 healthy volunteers. These images were randomly split into training and validation sets in an 8:2 ratio. Based on deep learning algorithms, 9 semantic segmentation networks were developed and trained using our dataset at Southern University of Science and Technology Hospital in September 2022. The performance of the networks was evaluated based on their segmenting accuracy and processing efficiency. Furthermore, these networks were implemented in an IGT system to assess their feasibility in 3-dimentional imaging precision.
Results: In 2D segmentation, Medical Transformer (MedT) showed the highest accuracy result with a Dice score of 89.4%, however, the efficiency in processing images was relatively lower at 2.6 frames per second (FPS). In 3D imaging, the average root mean square (RMS) between ultrasound (US)-generated models based on the networks and magnetic resonance imaging (MRI)-generated models was no more than 1.12 mm.
Conclusions: The findings of this study indicate the technological feasibility of a novel method for real-time visualization of distal humeral cartilage. The increased precision of ultrasound calibration and segmentation are both important approaches to improve the accuracy of 3D imaging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10423345 | PMC |
http://dx.doi.org/10.21037/qims-23-9 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139.
Protein language models (PLMs) have demonstrated impressive success in modeling proteins. However, general-purpose "foundational" PLMs have limited performance in modeling antibodies due to the latter's hypervariable regions, which do not conform to the evolutionary conservation principles that such models rely on. In this study, we propose a transfer learning framework called Antibody Mutagenesis-Augmented Processing (AbMAP), which fine-tunes foundational models for antibody-sequence inputs by supervising on antibody structure and binding specificity examples.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China.
Dissolution of CO in water followed by the subsequent hydrolysis reactions is of great importance to the global carbon cycle, and carbon capture and storage. Despite numerous previous studies, the reactions are still not fully understood at the atomistic scale. Here, we combined ab initio molecular dynamics (AIMD) simulations with Markov state models to elucidate the reaction mechanisms and kinetics of CO in supercritical water both in the bulk and nanoconfined states.
View Article and Find Full Text PDFJMIR Med Inform
January 2025
Department of Science and Education, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, China.
Background: Large language models (LLMs) have been proposed as valuable tools in medical education and practice. The Chinese National Nursing Licensing Examination (CNNLE) presents unique challenges for LLMs due to its requirement for both deep domain-specific nursing knowledge and the ability to make complex clinical decisions, which differentiates it from more general medical examinations. However, their potential application in the CNNLE remains unexplored.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Department of Computer Science, Colorado State University, Fort Collins, Colorado, United States of America.
Complex deep learning models trained on very large datasets have become key enabling tools for current research in natural language processing and computer vision. By providing pre-trained models that can be fine-tuned for specific applications, they enable researchers to create accurate models with minimal effort and computational resources. Large scale genomics deep learning models come in two flavors: the first are large language models of DNA sequences trained in a self-supervised fashion, similar to the corresponding natural language models; the second are supervised learning models that leverage large scale genomics datasets from ENCODE and other sources.
View Article and Find Full Text PDFPLoS One
January 2025
North China Institute of Aerospace Engineering, Langfang, China.
As the global economy expands, waterway transportation has become increasingly crucial to the logistics sector. This growth presents both significant challenges and opportunities for enhancing the accuracy of ship detection and tracking through the application of artificial intelligence. This article introduces a multi-object tracking system designed for unmanned aerial vehicles (UAVs), utilizing the YOLOv7 and Deep SORT algorithms for detection and tracking, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!