is a hemibiotrophic fungus responsible for the economically devastating and recalcitrant rice blast disease. However, the blast fungus is not only restricted to rice plants as it can also infect wheat, millet, and other crops. Despite previous outstanding discoveries aimed to understand and control the disease, the fungus remains one of the most important pathogens that threatens global food security. To cause disease, initiates morphological changes to attach, penetrate, and colonize rice cells, all while suppressing plant immune defenses that would otherwise hinder its proliferation. As such, actively secretes a battery of small proteins called "effectors" to manipulate host machinery. In this review, we summarize the latest findings in effector identification, expression, regulation, and functionality. We review the most studied effectors and their roles in pathogenesis. Additionally, we discern the current methodologies to structurally catalog effectors, and we highlight the importance of climate change and its impact on the future of rice blast disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10423181 | PMC |
http://dx.doi.org/10.1007/s42994-023-00099-4 | DOI Listing |
J Exp Bot
January 2025
State Key Laboratory for Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China.
Inhibition of jasmonic acid (JA) signaling renders plants more susceptible to biotic stresses. Pathogen infection can induce an increase in JA levels. However, our understanding of the mechanisms mediating pathogen-induced JA accumulation in rice (Oryza sativa) remains limited.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima 411-8540, Japan.
During vegetative growth, plants undergo various morphological and physiological changes in the transition from the juvenile phase to the adult phase. In terms of stress resistance, it has been suggested that plants gain or reinforce disease resistance during the process of maturation, which is recognized as adult plant resistance or age-related resistance. While much knowledge has been obtained about changes in disease resistance as growth stages progress, knowledge about changes in plant responses to pathogens with progressing age in plants is limited.
View Article and Find Full Text PDFPlants (Basel)
January 2025
College of Agriculture and Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
In rice, leucine-rich repeat nucleotide-binding site (NLR) proteins are pivotal immune receptors in combating -triggered rice blast. However, the precise molecular mechanism underlying how NLR proteins regulate downstream signalling remains elusive due to the lack of knowledge regarding their direct downstream targets. The NLR protein Pigm-1 was cloned from Shuangkang 77009 in our laboratory.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Computer Science and Engineering, University of Chittagong, Chattogram, Bangladesh.
Rice blast, caused by Magnaporthe oryzae, is one of the most destructive fungal diseases in rice, resulting in major economic losses worldwide. Genetic and genomic studies have identified key genes and proteins, such as AvrPik variants and MAX proteins, that are crucial for the pathogen's virulence. These effector proteins interact with specific alleles of the Pik gene family on rice chromosome 11, modulating the host's immune response.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Graduate School of Green-Bio Science, Kyung Hee University, Yongin, Republic of Korea.
Plants are susceptible to infection by various pathogens with high epidemic potential. pv () causes bacterial blight in rice, one of the most significant diseases in both temperate and tropical regions. In this study, we report the identification and characterization of , a sucrose-inducible transcription factor, that plays a role in the plant defense responses following infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!