Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10424336PMC
http://dx.doi.org/10.1186/s40246-023-00518-zDOI Listing

Publication Analysis

Top Keywords

correction landscape
4
landscape germline
4
germline pathogenic
4
pathogenic variants
4
variants patients
4
patients dual
4
dual primary
4
primary breast
4
breast lung
4
lung cancer
4

Similar Publications

Free Energy-Based Refinement of DNA Force Field via Modification of Multiple Nonbonding Energy Terms.

J Chem Inf Model

December 2024

Department of Chemistry and Institute of Functional Materials, Pusan National University, Busan 46241, South Korea.

The amber-OL21 force field (ff) was developed to better describe noncanonical DNA, including Z-DNA. Despite its improvements for DNA simulations, this study found that OL21's scope of application was limited by embedded ff artifacts. In a benchmark set of seven DNA molecules, including two double-stranded DNAs transitioning between B- and Z-DNA and five single-stranded DNAs folding into mini-dumbbell or G-quadruplex structures, the free energy landscapes obtained using OL21 revealed several issues: Z-DNA was overly stabilized; misfolded states in mini-dumbbell DNAs were most stable; DNA GQ folding was consistently biased toward an antiparallel topology.

View Article and Find Full Text PDF

Trauma has been one of the world's most common causes of death among younger age groups. In the UK, a lack of an organized and streamlined approach was reported in the management of traumatic injuries and patients involved in trauma cases in the UK. Therefore, a major trauma network system was devised to address these issues in line with other trauma systems around the world.

View Article and Find Full Text PDF

Preprocessing is necessary to extract meaningful results from electroencephalography (EEG) data. With many possible preprocessing choices, their impact on outcomes is fundamental. While previous studies have explored the effects of preprocessing on stationary EEG data, this research delves into mobile EEG, where complex processing is necessary to address motion artifacts.

View Article and Find Full Text PDF

A novel computational model ITHCS for enhanced prognostic risk stratification in ESCC by correcting for intratumor heterogeneity.

Brief Bioinform

November 2024

Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu District, Shanghai 200025, China.

Intratumor heterogeneity significantly challenges the accuracy of existing prognostic models for esophageal squamous cell carcinoma (ESCC) by introducing biases related to the varied genetic and molecular landscapes within tumors. Traditional models, relying on single-sample, single-region bulk RNA sequencing, fall short of capturing the complexity of intratumor heterogeneity. To fill this gap, we developed a computational model for intratumor heterogeneity corrected signature (ITHCS) by employing both multiregion bulk and single-cell RNA sequencing to pinpoint genes that exhibit consistent expression patterns across different tumor regions but vary significantly among patients.

View Article and Find Full Text PDF

Amyloids consist of fibrils that can be formed by a large variety of different precursor proteins. In localized amyloidosis, amyloids accumulate at the production site with a single organ being affected, whereas in systemic amyloidosis several organs are affected, with the heart being the most common, followed by the kidneys, liver, and the nervous system. The two most frequent systemic amyloidosis types affecting the heart in the vast majority (>95%) of cases are immunoglobulin light chain (AL) amyloidosis and transthyretin (TTR) amyloidosis (ATTR amyloidosis).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!