Background: Tumour necrosis factor superfamily protein 14 (TNFSF14), also called LIGHT, is an important regulator of immunological and fibrosis diseases. However, its specific involvement in cardiac fibrosis and atrial fibrillation (AF) has not been fully elucidated. The objective of this study is to examine the influence of LIGHT on the development of myocardial fibrosis and AF.
Methods: PCR arrays of peripheral blood mononuclear cells (PBMCs) from patients with AF and sinus rhythm was used to identify the dominant differentially expressed genes, followed by ELISA to evaluate its serum protein levels. Morphological, functional, and electrophysiological changes in the heart were detected in vivo after the tail intravenous injection of recombinant LIGHT (rLIGHT) in mice for 4 weeks. rLIGHT was used to stimulate bone marrow-derived macrophages (BMDMs) to prepare a macrophage-conditioned medium (MCM) in vitro. Then, the MCM was used to culture mouse cardiac fibroblasts (CFs). The expression of relevant proteins and genes was determined using qRT-PCR, western blotting, and immunostaining.
Results: The mRNA levels of LIGHT and TNFRSF14 were higher in the PBMCs of patients with AF than in those of the healthy controls. Additionally, the serum protein levels of LIGHT were higher in patients with AF than those in the healthy controls and were correlated with left atrial reverse remodelling. Furthermore, we demonstrated that rLIGHT injection promoted macrophage infiltration and M2 polarisation in the heart, in addition to promoting atrial fibrosis and AF inducibility in vivo, as detected with MASSON staining and atrial burst pacing respectively. RNA sequencing of heart samples revealed that the PI3Kγ/SGK1 pathway may participate in these pathological processes. Therefore, we confirmed the hypothesis that rLIGHT promotes BMDM M2 polarisation and TGB-β1 secretion, and that this process can be inhibited by PI3Kγ and SGK1 inhibitors in vitro. Meanwhile, increased collagen synthesis and myofibroblast transition were observed in LIGHT-stimulated MCM-cultured CFs and were ameliorated in the groups treated with PI3Kγ and SGK1 inhibitors.
Conclusion: LIGHT protein levels in peripheral blood can be used as a prognostic marker for AF and to evaluate its severity. LIGHT promotes cardiac fibrosis and AF inducibility by promoting macrophage M2 polarisation, wherein PI3Kγ and SGK1 activation is indispensable.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10424430 | PMC |
http://dx.doi.org/10.1186/s12967-023-04381-3 | DOI Listing |
Mediators Inflamm
January 2025
Faculty of Medical Sciences, Department of Genetics, University of Kragujevac, Kragujevac, Serbia.
L. fruits and leaf extracts have a broad range of immunomodulatory, anti-inflammatory, and antioxidant effects; however, their effects on cardiac protection have not been investigated. The study aims to test the biological activity of L.
View Article and Find Full Text PDFBackground: Left bundle branch area pacing (LBBAP) is widely performed in routine clinical practice. Achieving LBBAP requires deep insertion of the lead into the interventricular septum. LBBAP may be challenging in patients with a history of open-heart surgery (OHS) because of myocardial fibrosis associated with surgical trauma.
View Article and Find Full Text PDFAnatol J Cardiol
January 2025
Department of Physiology, Gazi University Faculty of Medicine, Ankara, Türkiye.
Background: A primary factor in the pathogenesis of aging is oxidative stress, with cardiac inflammation and fibrosis being contributed to by increased oxidative stress as organisms age. Oxidative stress enhances the cardiac fibrotic signaling pathway, with reactive oxygen species inducing cardiac fibrosis through increased expression of the profibrotic factor transforming growth factor-beta 1 (TGF-β1). Furthermore, Wnt/β-catenin signaling pathway is implicated in interstitial fibrosis, which is associated with TGF-β.
View Article and Find Full Text PDFJ Transl Med
January 2025
Aerospace Medical Center, Aerospace Center Hospital, Beijing, China.
Heart-on-a-chip (HoC) devices have emerged as a powerful tool for studying the human heart's intricate functions and dysfunctions in vitro. Traditional preclinical models, such as 2D cell cultures model and animal model, have limitations in accurately predicting human response to cardiovascular diseases and treatments. The HoC approach addresses these shortcomings by recapitulating the microscale anatomy, physiology, and biomechanics of the heart, thereby providing a more clinically relevant platform for drug testing, disease modeling, and personalized therapy.
View Article and Find Full Text PDFSignal Transduct Target Ther
January 2025
Department of Medicine 2, RWTH Aachen University, Medical Faculty, Aachen, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!