Mechanisms of Resistance to Chimeric Antigen Receptor T Cell Therapy.

Hematol Oncol Clin North Am

H. Lee Moffitt Cancer Center, Department of Blood and Marrow Transplant and Cellular Immunotherapy, 12902 USF Magnolia Drive, Suite 3057, Tampa, FL 33612, USA. Electronic address:

Published: December 2023

CAR T cell therapy has significantly shaped the treatment landscape for refractory hematologic malignancies including large B-cell lymphomas, multiple myeloma, and leukemias. While response rates for a previously dismal prognosis have improved, certain obstacles still remain to achieving CAR T infallibility. In this article, we review the data surrounding proposed resistance mechanisms of tumors to CAR T, including the implications of target loss, exhausted T cells as effete effectors, the necessity of maximal CAR T expansion to durable response, the negative impact of an inflammatory milieu and a suppressive tumor microenvironment, and the optimal tumor-to-effector ratio that associates with best outcomes. The future of CAR T should aim to mitigate these weaknesses in order to bolster the efficacy of this revolutionary therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.hoc.2023.07.003DOI Listing

Publication Analysis

Top Keywords

car
5
mechanisms resistance
4
resistance chimeric
4
chimeric antigen
4
antigen receptor
4
receptor cell
4
cell therapy
4
therapy car
4
car t cell
4
t cell therapy
4

Similar Publications

Leaky and structurally abnormal blood vessels and increased pressure in the tumor interstitium reduce the infiltration of CAR-T cells in solid tumors, including triple-negative breast cancer (TNBC). Furthermore, high burden of tumor cells may cause reduction of infiltrating CAR-T cells and their functional exhaustion. In this study, various effector-to-target (E:T) ratio experiments are established to model the treatment using CAR-T cells in leukemia (high E:T ratio) and solid tumor (low E:T ratio).

View Article and Find Full Text PDF

Background: Chimeric antigen receptor (CAR)-T-cell therapy is a breakthrough in the field of cancer immunotherapy, wherein T cells are genetically modified to recognize and attack cancer cells. Delivery of the CAR gene is a critical step in this therapy and is usually achieved by transducing patient T cells with a lentiviral vector (LV). Because the LV is an essential component of CAR-T manufacturing, there is a need for simple bioassays that reflect the mechanism of action (MOA) of the LV and can measure LV potency with accuracy and specificity.

View Article and Find Full Text PDF

Craniocervical edema appears soon after chimeric antigen receptor T-cell (CAR-T) therapy in some cases. This phenomenon is often observed right after systemic cytokine release syndrome (CRS), and it is called local CRS (L-CRS). In severe cases, L-CRS causes airway obstruction and asphyxia, but it is not yet well known among hematologists.

View Article and Find Full Text PDF

New types of metal-organic framework (MOF) materials have great potential in solving the current global dilemma on energy, environment, and medical care. Herein, based on two kinds of biomolecule-MOFs (Bio-MOFs) with favorable biocompatibility and degradation-reconstruction characteristics, we have established a self-powered muti-functional device to achieve an efficient and broad-spectrum environmental energy collection and biomedical applications. Combining Zn(II) and carnosine-based Zn-Car_MOF possessing a high piezoelectric response (d = 11.

View Article and Find Full Text PDF

Chimeric Antigen Receptor T-Cell (CAR-T) therapy is an effective therapy and promising frontier in the treatment of hematologic malignancies. However, this revolutionary treatment has led to new challenges for patients, caregivers, and the healthcare system. In this review article, we discuss the various difficulties patients face both in the acute and long-term period following CAR-T infusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!