The development and operation of a nanosensor for detecting the poisonous 1-chloro-3-ethylamino-5-isopropylamino-2,4,6-triazine (Atrazine) are described in this study for the first time. The carbon electrode (CE) surface was modified with cysteine-substituted naphthalene diimide to create this sensitive platform. The developed nanosensor (NDI-cys/GCE) was evaluated for its ability to sense Atrazine using differential pulse voltammetry and cyclic voltammetry. To achieve the best response from the target analyte, the effects of several parameters were examined to optimize the conditions. The cysteine-substituted naphthalene diimide significantly improved the signals of the Atrazine compared to bare GCE due to the synergistic activity of substituted naphthalene diimide and cysteine molecules. Under optimal conditions, atrazine detection limits at the (NDI-cys/GCE) were reported to be 94 nM with a linear range of 10-100 μM. The developed sensing platform also showed positive results when used to detect the atrazine herbicide in real tap water, wastewater, and milk samples. Furthermore, a reasonable recovery rate for real-time studies, repeatability, and stability revealed that the developed electrochemical platform could be used for sample analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2023.116808 | DOI Listing |
Chem Commun (Camb)
January 2025
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
Electron donor tetrathiafulvalene (TTF) and electron acceptor naphthalene diimide (NDI) derivatives were used to synthesize a 3D Zn-TTF/NDI-MOF. Multiple redox active sites and charge transfer endow the pristine MOF anode with excellent rate behavior and long term cycling performance (with an average specific capacity of 956 mA h g at 1 A g over 600 cycles). This study highlights the great potential of elaborately-designed MOFs for developing efficient anode materials.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111, Chemnitz, Germany.
Aromatic diimides such as naphthalene diimide (NDI) and pyromellitic diimide (MDI) are important building blocks for organic electrode materials. They feature a two-electron redox mechanism that allows for energy storage. Due to the smaller size of MDI compared to NDI its theoretical capacity is higher.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Chemistry, Beijing Normal University, Beijing 100875, China.
Designing the architecture of donor-acceptor (D-A) pairs is an effective strategy to tailor the electronic structure of conjugated macrocycles for optoelectronic devices. Herein, we present the synthesis of three D-A nanohoops ( = 7, 8, 9) containing a naphthalene diimide (NDI) unit as an acceptor and []cycloparaphenylenes ([]CPPs) moieties as donors. The D-A characteristics of were substantiated through absorption and fluorescence spectroscopic studies, electrochemical investigations, and computational analysis.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India.
Naphthalenediimide (NDI)-based donor-acceptor co-polymers with tunable electronic, optical, mechanical, and transport properties have shown immense potential as n-type conducting polymers in organic (opto)electronics. During the operation, the polymers undergo reduction at different charged states, which alters their (opto)electronic properties mainly due to the formation of the quasiparticles, polaron/bipolaron. The theoretical study based on quantum mechanical calculations can provide us with a detailed understanding of their (opto)electronic properties, which is missing to a great extent.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Kyoto University: Kyoto Daigaku, Institute for Chemical Research, JAPAN.
Precise control of assembled structures of quantum dots (QDs) is crucial for realizing the desired photophysical properties, but this remains challenging. Especially, the one-dimensional (1D) control is rare due to the nearly isotropic nature of QDs. Herein, we propose a novel strategy for controlling the 1D-arrangement range of cubic perovskite QDs in solution based on the morphological modification of a supramolecular polymer (SP) template.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!