Rehmannia glutinosa Libosch and Cornus officinalis Sieb herb couple ameliorates renal interstitial fibrosis in CKD rats by inhibiting the TGF-β1/MAPK signaling pathway.

J Ethnopharmacol

School of Public Health, Nantong University, 19 Qixiu Road, Nantong, China; School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong, China. Electronic address:

Published: January 2024

Ethnopharmacological Relevance: Herb couple Rehmannia glutinosa Libosch and Cornus officinalis Sieb (RC), originated from "Liuwei Dihuang Pill" which recorded in Key to Therapeutics of Children's Diseases. Traditionally, they have been used widely for their ability to nourish yin and energize the kidneys. Our previous study indicated that the RC could protect against adenine induced Chronic kidney disease (CKD) rats. Nevertheless, there is still no clear explanation of the mechanisms by which RC affects renal interstitial fibrosis in CKD rats.

Aim Of The Study: Current Work aims to explore the amelioration and potential mechanism of RC on renal interstitial fibrosis in CKD rats.

Materials And Methods: CKD rats were induced by adenine. Two weeks after administration, blood, urine, and kidney tissue were collected for biochemical analysis. Observing the physiological state of rats through the changes of rat body weight and renal index. The pro-inflammatory cytokines were measured by enzyme linked immunosorbent assay (ELISA), while renal tissue damage and fibrosis were assessed with Hematoxylin-eosin staining (H&E) and Masson's trichrome staining. In order to determine the levels of indicators and proteins associated with fibrosis signaling pathways, real time PCR (Rt-PCR), Western blot (WB), and immunofluorescence were employed.

Results: The renal interstitial fibrosis led to impaired cellular functions with increased the levels of Blood Urea Nitrogen (BUN), Urine protein (UP), Interleukin-1β (IL-1β), Interleukin-6 (IL-6), and Tumor Necrosis Factor alpha (TNF-α). and simultaneous up-regulated collagenⅠ(COL-1), fibronection (FN), α-smooth muscle actin (a-SMA), transforming growth factor-β1 (TGF-β1), c-Jun N-terminal kinase (JNK), p38 and extracellular regulated protein kinases (ERK), down-regulated the expression of the E-cadherin proteins. RC notably improved renal dysfunction in CKD rats as indicated by decreases in BUN, UP, and renal index. In addition, consistent with the morphological changes of renal tissue, renal interstitial fibrosis in CKD rats after RC intervention was significantly improved, mainly manifested by a decrease in the positive expression of COL-1, FN, and a-SMA, and increased levels of E-cadherin protein. Meanwhile, RC reduced the classical pro-inflammatory cytokines IL-1β, IL-6, and TNF-α in adenine-induced CKD rats. Additionally, RC administration also down-regulated TGF-β1, JNK, p38 and ERK.

Conclusion: In conclusion, RC may reduce inflammation in adenine induced CKD rats, improve extracellular matrix (ECM) components deposition, and diminish epithelial-mesenchymal transition (EMT) marker protein levels. Furthermore, RC intervention significantly reduces the release of inflammatory cytokines and inhibits the TGF-β1/MAPK signaling pathway. Based on the results, RC might be useful in the treatment of adenine induced renal fibrosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2023.117039DOI Listing

Publication Analysis

Top Keywords

ckd rats
28
renal interstitial
20
interstitial fibrosis
20
fibrosis ckd
16
adenine induced
12
renal
11
ckd
9
rehmannia glutinosa
8
glutinosa libosch
8
libosch cornus
8

Similar Publications

Preventive Effects of Resistance Training on Hemodynamics and Kidney Mitochondrial Bioenergetic Function in Ovariectomized Rats.

Int J Mol Sci

December 2024

Department of Physiological Sciences, Interinstitutional Post-Graduate Program of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos 13.566-490, SP, Brazil.

Menopause occurs due to the depletion of the ovarian reserve, leading to a progressive decline in estrogen (E2) levels. This decrease in E2 levels increases the risk of developing several diseases and can coexist with chronic kidney disease (CKD). Arterial hypertension (AH) is another condition associated with menopause and may either contribute to or result from CKD.

View Article and Find Full Text PDF

Increasing evidence suggests that dysbiosis of gut microbiota exacerbates chronic kidney disease (CKD) progression. Curcumin (CUR) has been reported to alleviate renal fibrosis in animal models of CKD. However, the relationship between CUR and gut microbiome in CKD remains unclear.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is a conceivable new risk factor for cognitive disorder and dementia. Uremic toxicity, oxidative stress, and peripheral-central inflammation have been considered important mediators of CKD-induced nervous disorders. Nitric oxide (NO) is a retrograde neurotransmitter in synapses, and has vital roles in intracellular signaling in neurons.

View Article and Find Full Text PDF

Background/objectives: Chronic kidney disease (CKD) is a progressive pathological condition which results in the severe fibrosis of the kidneys. However, the mechanisms of CKD progression and fibrogenesis remain unclear. We wanted to examine the effects that apocynin and hyperbaric oxygen therapy (HBOT) have on renal function and structure in animals with CKD induced through 5/6 nephrectomy (5/6 Nx-L).

View Article and Find Full Text PDF

Antihypertensive Effects of a Sodium Thiosulfate-Loaded Nanoparticle in a Juvenile Chronic Kidney Disease Rat Model.

Antioxidants (Basel)

December 2024

Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.

Sodium thiosulfate (STS), a precursor of hydrogen sulfide (HS), has demonstrated antihypertensive properties. Previous studies have suggested that HS-based interventions can prevent hypertension in pediatric chronic kidney disease (CKD). However, the clinical application of STS is limited by its rapid release and intravenous administration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!