The objective of this study was to develop pH-sensitive film indicators for intelligent food packaging by incorporating red cabbage anthocyanins (RCA) and zinc oxide nanoparticles (ZnO NPs) into an alginate (Alg) film, aiming to mitigate the risk of foodborne illnesses. The films were fabricated using a solvent-casting method and crosslinked with a calcium chloride (CaCl) solution. Thorough evaluations of the films' physical, mechanical, and structural properties demonstrated significant improvements in elastic modulus and UV/vis light barrier characteristics, reduced water vapor permeability (WVP), and moisture content attributed to integrating RCA and ZnO NPs. The resulting film displayed discernible color changes when exposed to various pH buffer solutions and ammonia vapor, indicating heightened sensitivity to pH fluctuations due to the presence of ZnO NPs. Visual assessment using prawns as test specimens revealed a color shift from violet (indicating satisfactory condition) to blue-greenish (indicating spoilage), corroborated by colorimetric analysis. Moreover, the Alg/ZnO/RCA film exhibited antioxidant and antibacterial properties, demonstrated biodegradation activity, and showed no toxic effects on RSC96 cells, further underscoring its potential as an effective freshness indicator for food products.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.126203DOI Listing

Publication Analysis

Top Keywords

zno nps
12
red cabbage
8
zinc oxide
8
oxide nanoparticles
8
freshness indicator
8
properties demonstrated
8
film
5
development alginate-based
4
alginate-based film
4
film incorporated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!