Angiogenesis, the formation of the new blood vessels from pre-existing vasculature, is an essential process occurring under both normal and pathological conditions, such as inflammation and cancer. This complex process is regulated by several cytokines, growth factors and extracellular matrix components modulating endothelial cell and pericyte function. In this study, we discovered that the extracellular matrix glycoprotein Elastin Microfibril Interfacer 2 (Emilin2) plays a prominent role in pericyte physiology. This work was originally prompted by the observations that tumor-associated vessels from Emilin2 mice display less pericyte coverage, impaired vascular perfusion, and reduced drug efficacy, suggesting that Emilin2 could promote vessel maturation and stabilization affecting pericyte recruitment. We found that Emilin2 affects different mechanisms engaged in pericyte recruitment and vascular stabilization. First, human primary endothelial cells challenged with recombinant Emilin2 synthesized and released ∼ 2.1 and 1.2 folds more PDGF-BB and HB-EGF, two cytokines known to promote pericyte recruitment. We also discovered that Emilin2, by directly engaging αβ and αβ integrins, highly expressed in pericytes, served as an adhesion substrate and haptotactic stimulus for pericytes. Moreover, Emilin2 evoked increased NCadherin expression via the sphingosine-1-phosphate receptor, leading to enhanced vascular stability by fostering interconnection between endothelial cells and pericytes. Finally, restoring pericyte coverage in melanoma and ovarian tumor vessels developed in Emilin2 mice improved drug delivery to the tumors. Collectively, our results implicate Emilin2 as a prominent regulator of pericyte function and suggest that Emilin2 expression could represent a promising maker to predict the clinical outcome of patients with melanoma, ovarian, and potentially other forms of cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.matbio.2023.08.002 | DOI Listing |
Theranostics
January 2025
Neurooncology Unit, Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid 28041, Spain.
Glioblastoma IDH wild type (GBM IDH wt) has a poor prognosis and a strongly associated with inflammatory processes. Inflammatory molecules generate positive feedback with tumor cells fueling tumor growth as well as recruitment of immune cells that promote aggressiveness. Although the role of many inflammatory molecules is well known, there are many macromolecules, such as the S100A proteins, whose role is only now beginning to be established.
View Article and Find Full Text PDFAngiogenesis
December 2024
Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy.
Proc Natl Acad Sci U S A
December 2024
Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201.
The brain has evolved mechanisms to dynamically modify blood flow, enabling the timely delivery of energy substrates in response to local metabolic demands. Several such neurovascular coupling (NVC) mechanisms have been identified, but the vascular signal transduction and transmission mechanisms that enable dilation of penetrating arterioles (PAs) remote from sites of increased neuronal activity are unclear. Given the exponential relationship between vessel diameter and blood flow, tight control of arteriole membrane potential and diameter is a crucial aspect of NVC.
View Article and Find Full Text PDFJ Control Release
January 2025
HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; Instituto de Investigación Sanitaria HM Hospitales; CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases), Instituto Carlos III, Madrid, Spain; Facultad HM de Ciencias de la Salud de la Universidad Camilo José Cela, Madrid, Spain. Electronic address:
Low-intensity focused ultrasound (LIFU) combined with intravenously circulating microbubbles has recently emerged as a novel approach for increasing delivery through the blood-brain barrier (BBB). This technique safely and transiently enables therapeutic agents to overcome the BBB, which typically poses a significant obstacle for treatment of brain disorders. However, the full impact of LIFU on the entire neurovascular unit (NVU), as well as the mechanisms and factors involved in restoring BBB integrity still require further elucidation.
View Article and Find Full Text PDFFront Cell Dev Biol
October 2024
Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
In this study, we identify and characterize new molecular determinants that optimize human capillary tube network assembly. Our lab has previously reported a novel, serum free-defined 3D co-culture model using human endothelial cells (ECs) and human pericytes whereby EC-lined tubes form and co-assemble with pericytes, but when these cultures are maintained at or beyond 5 days, tubes become progressively wider and unstable. To address this issue, we generated novel human pericytes that carry a tissue inhibitor of metalloproteinase (TIMP)-3 transgene which can be upregulated following doxycycline addition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!