Methicillin-resistant Staphylococcus aureus (MRSA) is a foremost human and animal pathogen with public health and veterinary significance causing hospital and community infections and contagious bovine mastitis. Due to its ability to develop multidrug resistance (MDR) and its pathogenicity, MRSA infection control is becoming a global concern. Natural antibacterial options are needed to combat MDR development and infectious dissemination. This study investigated the antimicrobial resistance and virulence genes profiling of MRSA isolates and explored the antivirulence efficacy of trans-cinnamaldehyde, thymol, and carvacrol essential oils (EOs) against multivirulent and MDR-MRSA isolates. Thirty six S. aureus isolates (25%) were retrieved, of which 34 (94.4%) were MRSA. A high prevalence of MDR (66.7%) was monitored and all 53 molecularly verified isolates possessed icaA and cna virulence genes. Moreover, 94.1% of these isolates were multivirulent with 23.5% of them carrying icaA, cna, eta, tst, and sea virulence genes. Our data proved superior in vitro antimicrobial and antivirulence activities of trans-cinnamaldehyde, thymol, and carvacrol. They inhibited the growth of multi-virulent and MDR-MRSA isolates and downregulated the transcription of examined virulence genes. Our study suggests using EOs as prospective antimicrobials with excellent antivirulence activities against MRSA isolates. We provided data regarding the eventual role of phytogenics in prevention and control of MRSA infection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micpath.2023.106301DOI Listing

Publication Analysis

Top Keywords

virulence genes
16
methicillin-resistant staphylococcus
8
staphylococcus aureus
8
vitro antimicrobial
8
antimicrobial antivirulence
8
mrsa infection
8
mrsa isolates
8
trans-cinnamaldehyde thymol
8
thymol carvacrol
8
mdr-mrsa isolates
8

Similar Publications

Multicopy subtelomeric genes underlie animal infectivity of divergent Cryptosporidium hominis subtypes.

Nat Commun

December 2024

State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.

The anthroponotic Cryptosporidium hominis differs from the zoonotic C. parvum in its lack of infectivity to animals, but several divergent subtypes have recently been found in nonhuman primates and equines. Here, we sequence 17 animal C.

View Article and Find Full Text PDF

is one of the opportunistic pathogens that may cause serious health problems and can produce several virulence factors, which are responsible for various infections, particularly in immunocompromised patients. They are responsible for producing infections on indwelling medical devices by attaching on to them and forming a biofilm. Antibiofilm, antivirulence, and gene expression studies of biofilm treated with esters of flavonols were evaluated.

View Article and Find Full Text PDF

Whole-genome sequencing and genomic analysis of four strains newly isolated from human feces.

Front Microbiol

December 2024

West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.

Background: Numerous studies have demonstrated that is closely associated with human health. These bacteria colonize the mucus layer of the gastrointestinal tract and utilize mucin as their sole source of carbon and nitrogen. spp.

View Article and Find Full Text PDF

Association between clinical-biological characteristics of Klebsiella pneumoniae and 28-day mortality in patients with bloodstream infection.

BMC Microbiol

December 2024

Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo Municipal Hospital, Zibo, 255400, China.

Background: Klebsiella pneumoniae bloodstream infection (KP BSI) is a severe clinical condition characterized by high mortality rates. Despite the clinical significance, accurate predictors of mortality in KP BSI have yet to be fully identified.

Methods: A retrospective analysis was conducted on the clinical data of 90 cases of KP BSI.

View Article and Find Full Text PDF

Phosphorylation of the prokaryotic histone-like protein H-NS modulates bacterial virulence in Salmonella Typhimurium.

Microbiol Res

December 2024

Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Department of Infectious Diseases, Peking University Third Hospital, Beijing, 100191, China. Electronic address:

H-NS is a prokaryotic histone-like protein that binds to bacterial chromosomal DNA with important regulatory roles in gene expression. Unlike histone proteins, hitherto post-translational modifications of H-NS are still largely uncharacterized, especially in bacterial pathogens. Salmonella Typhimurium is a primary enteric pathogen and its virulence is mainly dependent on specialized type III secretion systems (T3SSs), which were evolutionarily acquired via horizontal gene transfer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!