Retinal hemodynamics and biomechanics play a significant role in understanding the pathophysiology of several ocular diseases. However, these parameters are significantly affected due to changed blood vessel morphology ascribed to pathological conditions, particularly diabetes. In this study, an image-based computational fluid dynamics (CFD) model is applied to examine the effects of changed vascular morphology due to diabetes on blood flow velocity, vorticity, wall shear stress (WSS), and oxygen distribution and compare it with healthy. The 3D patient-specific vascular architecture of diabetic and healthy retina is extracted from Optical Coherence Tomography Angiography (OCTA) images and fundus to extract the capillary level information. Further, Fluid-structure interaction (FSI) simulations have been performed to compare the induced tissue stresses in diabetic and healthy conditions. Results illustrate that most arterioles possess higher velocity, vorticity, WSS, and lesser oxygen concentration than arteries for healthy and diabetic cases. However, an opposite trend is observed for venules and veins. Comparisons show that, on average, the blood flow velocity in the healthy case decreases by 42 % in arteries and 21 % in veins, respectively, compared to diabetic. In addition, the WSS and von Mises stress (VMS) in healthy case decrease by 49 % and 72 % in arteries and by 6 % and 28 % in veins, respectively, when compared with diabetic, making diabetic blood vessels more susceptible to wall rupture and tissue damage. The in-silico results may help predict the possible abnormalities region early, helping the ophthalmologists use these estimates as prognostic tools and tailor patient-specific treatment plans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mvr.2023.104594 | DOI Listing |
MethodsX
June 2025
Texas A&M University Department of Biomedical Engineering, College Station, TX 77840, US.
Physical anatomical models constructed from medical images are valuable research tools for evaluating patient-specific clinical circumstances. For example, 3D models replicating a patient's internal anatomy in the cardiovascular system can be used to validate Computational Fluid Dynamics (CFD) models, which can then be used to identify potential hemodynamic consequences of surgical decisions by providing insight into how blood and vascular tissue mechanics may contribute to disease progression and post-operative complications. Patient-specific models have been described in the literature; however, rapid prototyping models that achieve anatomical accuracy, optical transparency, and thin-walled compliance in a cost and time-effective approach have proven challenging.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Department of Bioengineering, Imperial College London; The Francis Crick Institute;
Mechanical forces continuously provide feedback to heart valve morphogenetic programs. In zebrafish, cardiac valve development relies on heart contraction and physical stimuli generated by the beating heart. Intracardiac hemodynamics, driven by blood flow, emerge as fundamental information shaping the development of the embryonic heart.
View Article and Find Full Text PDFJ Thorac Dis
December 2024
College of Chemistry and Life Science, Beijing University of Technology, Beijing, China.
Background: Left ventricular assist device (LVAD) has been widely used as an alternative treatment for heart failure, however, aortic regurgitation is a common complication in patients with LVAD support. And the O-A angle (the angle between LVAD outflow graft and the aorta) is considered as a vital factor associated with the function of aortic valve. To date, the biomechanical effect of the O-A angle on the aortic valve remains largely unknown.
View Article and Find Full Text PDFProg Mater Sci
April 2025
Institute of Biomechanics, Graz University of Technology, Austria.
Aortic dissection continues to be responsible for significant morbidity and mortality, although recent advances in medical data assimilation and in experimental and models have improved our understanding of the initiation and progression of the accumulation of blood within the aortic wall. Hence, there remains a pressing necessity for innovative and enhanced models to more accurately characterize the associated pathological changes. Early on, experimental models were employed to uncover mechanisms in aortic dissection, such as hemodynamic changes and alterations in wall microstructure, and to assess the efficacy of medical implants.
View Article and Find Full Text PDFSports Med
January 2025
IU School of Optometry and Program in Neuroscience, Indiana University, Bloomington, IN, USA.
Background: Persisting post-concussion symptoms (PPCS) is a condition characterized by prolonged recovery from a mild traumatic brain injury (mTBI) and compromised quality of life. Previous literature, on the basis of small sample sizes, concludes that there are several risk factors for the development of PPCS.
Objective: We seek to identify protective and risk factors for developing slow recovery or persisting post-concussion symptoms (PPCS) by analyzing medical history, contact sport level, setting, and the Sport Concussion Assessment Tool (SCAT) and Brief Symptom Inventory (BSI-18) assessments at baseline and post-injury.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!