Thin continuous membrane coating with high surface energy for comprehensive antifouling seawater distillation.

Water Res

Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan. Electronic address:

Published: October 2023

Membrane distillation (MD) has prominent advantages such as treating high-salinity wastewater with a low-grade thermal energy, high salt rejection, and zero discharge. However, organic fouling and mineral scaling are two major challenges for hydrophobic MD membranes when used for practical applications. Commonly, improving organic fouling- and mineral scaling-resistance require oppositely enhanced wetting properties of membrane, thus is difficult to simultaneously realize dual resistance with one membrane. Here, we proposed to use underwater thermodynamically stable high-surface-energy coating to modify the hydrophobic membrane with Janus structures comprising different surface energy. The underlayered structure meets the hydrophobicity requirements of the MD membrane, while the coating layer realizes dual resistance to organic and inorganic foulants. Theoretical analysis and experimental proof reveal that the membrane with the high-surface-energy coating layer outperforms the pristine one with approximately 10 times of longevity. This strategy provides a new way for the use of high-surface-energy materials in versatilely fouling-resistant MD process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2023.120439DOI Listing

Publication Analysis

Top Keywords

membrane coating
8
surface energy
8
dual resistance
8
high-surface-energy coating
8
coating layer
8
membrane
7
thin continuous
4
continuous membrane
4
coating
4
coating high
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!