Background: Previous studies have focused on both ventral striatum (VS) and dorsal striatum (DS) in characterizing dopaminergic deficits in addiction. Animal studies suggest VS and DS dysfunction each in association with impulsive and compulsive cocaine use during early and later stages of addiction. However, few human studies have aimed to distinguish the roles of VS and DS dysfunction in cocaine misuse.
Methods: We examined VS and DS resting-state functional connectivity (rsFC) of 122 recently abstinent cocaine-dependent individuals (CDs) and 122 healthy controls (HCs) in 2 separate cohorts. We followed published routines in imaging data analyses and evaluated the results at a corrected threshold with age, sex, years of drinking, and smoking accounted for.
Results: CDs relative to HCs showed higher VS rsFC with the left inferior frontal cortex (IFC), lower VS rsFC with the hippocampus, and higher DS rsFC with the left orbitofrontal cortex. Region-of-interest analyses confirmed the findings in the 2 cohorts examined separately. In CDs, VS-left IFC and VS-hippocampus connectivity was positively and negatively correlated with average monthly cocaine use in the prior year, respectively. In the second cohort where participants were assessed with the Barratt Impulsivity Scale (BIS-11), VS-left IFC and VS-hippocampus connectivity was also positively and negatively correlated with BIS-11 scores in CDs. In contrast, DS-orbitofrontal cortex connectivity did not relate significantly to cocaine use metrics or BIS-11 scores.
Conclusion: These findings associate VS rsFC with impulsivity and the severity of recent cocaine use. How DS connectivity partakes in cocaine misuse remains to be investigated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10519818 | PMC |
http://dx.doi.org/10.1093/ijnp/pyac019 | DOI Listing |
J Pain Res
January 2025
Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, Department of Radiology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
Purpose: To investigate whether functional radiomic features in bilateral hippocampi can identify the cognitively impaired patients from low-back-related leg pain (LBLP).
Patients And Methods: For this retrospective study, a total of 95 clinically definite LBLP patients (40 cognitively impaired patients and 45 cognitively preserved patients) were included, and all patients underwent functional MRI and clinical assessments. After calculating the amplitude of low-frequency fluctuations (ALFF), regional homogeneity (ReHo), voxel-mirrored homotopic connectivity (VMHC) and degree centrality (DC) imaging, the radiomic features (n = 819) of bilateral hippocampi were extracted from these images, respectively.
Front Neurosci
January 2025
Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
Purpose: To investigate static and dynamic brain functional alterations in dysthyroid optic neuropathy (DON) using resting-state functional MRI (rs-fMRI) with the amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo).
Materials And Methods: Fifty-seven thyroid-associated ophthalmopathy (TAO) patients (23 DON and 34 non-DON) and 27 healthy controls (HCs) underwent rs-fMRI scans. Static and dynamic ALFF (sALFF and dALFF) and ReHo (sReHo and dReHo) values were compared between groups.
Importance: The pathophysiology of ADHD is complicated by high rates of psychiatric comorbidities, thus delineating unique versus shared functional brain perturbations is critical in elucidating illness pathophysiology.
Objective: To investigate resting-state fMRI (rsfMRI)-complexity alterations among children with ADHD, oppositional defiant disorder (ODD), and obsessive-compulsive disorder (OCD), respectively, and comorbid ADHD, ODD, and OCD, within the cool and hot executive function (EF) networks.
Design: We leveraged baseline data (wave 0) from the Adolescent Brain and Cognitive Development (ABCD) Study.
Autism is a heterogeneous condition, and functional magnetic resonance imaging-based studies have advanced understanding of neurobiological correlates of autistic features. Nevertheless, little work has focused on the optimal brain states to reveal brain-phenotype relationships. In addition, there is a need to better understand the relevance of attentional abilities in mediating autistic features.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
October 2024
Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, USA.
Delineating the normative developmental profile of functional connectome is important for both standardized assessment of individual growth and early detection of diseases. However, functional connectome has been mostly studied using functional connectivity (FC), where undirected connectivity strengths are estimated from statistical correlation of resting-state functional MRI (rs-fMRI) signals. To address this limitation, we applied regression dynamic causal modeling (rDCM) to delineate the developmental trajectories of effective connectivity (EC), the directed causal influence among neuronal populations, in whole-brain networks from infancy to adolescence (0-22 years old) based on high-quality rs-fMRI data from Baby Connectome Project (BCP) and Human Connectome Project Development (HCP-D).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!