Microcystins with leucine arginine (MC-LR) is a virulent hepatotoxin, which is commonly present in polluted water with its demethylated derivatives [Dha] MC-LR. This study reported a low-cost molecularly imprinted polymer network-based electrochemical sensor for detecting MC-LR. The sensor was based on a three-dimensional conductive network composed of multi-walled carbon nanotubes (MWCNTs), graphene quantum dots (GQDs), and gold nanoparticles (AuNPs). The molecularly imprinted polymer was engineered by quantum chemical computation utilizing p-aminothiophenol (p-ATP) and methacrylic acid (MAA) as dual functional monomers and L-arginine as a segment template. The electrochemical reaction mechanism of MC-LR on the sensor was studied for the first time, which is an irreversible electrochemical oxidation reaction involving an electron and two protons, and is controlled by a mixed adsorption-diffusion mechanism. The sensor exhibited a great detection response to MC-LR in the linear range of 0.08-2 μg/L, and the limit of detection (LOD) is 0.0027 μg/L (S/N = 3). In addition, the recoveries of the total amount of MC-LR and [Dha] MC-LR in the actual sample by the obtained sensor were in the range from 91.4 to 116.7%, which indicated its great potential for environmental detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2023.238 | DOI Listing |
Talanta
January 2025
Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086, Tallinn, Estonia. Electronic address:
Ampicillin (AMP) ranks third among the top ten most frequently sold antibiotic combinations globally, raising concerns due to its extensive use. Improper disposal practices in agriculture, aquaculture, and healthcare have led to environmental contamination of water sources with elevated AMP levels. Current methods for detecting such contamination are costly, require sophisticated equipment, and depend on skilled personnel and unstable natural receptors.
View Article and Find Full Text PDFAnal Methods
January 2025
Department of Nutrition and Dietetics, Faculty of Health Sciences, Hasan Kalyoncu University, Gazi-antep, 27000, Turkey.
In the present study, a novel voltammetric sensor based on a boron-doped copper oxide/graphene (B-CuO-Gr) nanocomposite and molecularly imprinted polymer (MIP) was developed for the detection of paclobutrazol (PAC) in apple and orange juice samples. The B-CuO-Gr nanocomposite was prepared using sol-gel and calcination methods. After modifying glassy carbon electrodes with the B-CuO-Gr nanocomposite, PAC-imprinted electrodes were prepared in the presence of 100.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China. Electronic address:
Dimethoate (DIM) is one of the most extensively applied organophosphorus pesticides (OPs), which is used to boost farm productivity due to its high insecticidal efficacy. However, the excessive use of DIM can result in the extensive contamination of soil, groundwater and food. Monitoring of DIM in environmental and food samples is crucial in view of its potential health risks and environmental hazards from excessive residues.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China.
In this paper, a novel molecularly imprinted polymer membrane modified glassy carbon electrode for electrochemical sensors (MIP-OH-MWCNTs-GCE) for epinephrine (EP) was successfully prepared by a gel-sol method using an optimized functional monomer oligosilsesquioxane-AlO sol-ITO composite sol (ITO-POSS-AlO). Hydroxylated multi-walled carbon nanotubes (OH-MWCNTs) were introduced during the modification of the electrodes, and the electrochemical behavior of EP on the molecularly imprinted electrochemical sensors was probed by the differential pulse velocity (DPV) method. The experimental conditions were optimized.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
The highly selective and sensitive determination of pesticide residues in food is critical for human health protection. Herein, the specific selectivity of molecularly imprinted polymers (MIPs) was proposed to construct an electrochemical sensor for the detection of carbendazim (CBD), one of the famous broad-spectrum fungicides, by combining with the synergistic effect of bioelectrocatalysis and nanocomposites. Gold nanoparticle-reduced graphene oxide (AuNP-rGO) composites were electrodeposited on a polished glassy carbon electrode (GCE).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!