sp. nov., isolated from estuarine sediment of the Arakawa River.

Int J Syst Evol Microbiol

Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan.

Published: August 2023

A Gram-stain-negative, rod-shaped, non-motile and strictly aerobic bacterium, which showed biofilm-forming ability on polystyrene, designated as strain B-399, was isolated from the estuarine sediment of the Arakawa River near Tokyo Bay. It grew at pH 6.0-8.5, at 15-35 °C and in the presence of 0-7.5 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain B-399 was clustered in the genus and has 96.94 % sequence similarity to X12M-4, which was the only validly described species in this genus. On the basis of our genome sequencing analyses, the average nucleotide identity and digital DNA-DNA hybridization values between strains B-399 and X12M-4 were 79.54 and 22.30 %, respectively, which confirms that strain B-399 represents a novel species of the genus . The draft genome size and the DNA G+C content of strain B-399 were 4.12 Mb and 65.2 mol%, respectively. The major fatty acids (>10 %) of strain B-399 were C, summed feature 8 (C 6 and/or C 7) and C cyclo 8. The polar lipids were phosphatidylcholine, phosphatidylglycerol, an unidentified phospholipid, an unidentified aminolipid and unidentified lipids. The respiratory quinone was Q-10. These chemotaxonomic features were almost coincident with those of the genus . Therefore, strain B-399 should be classified as representing a new species of the genus , for which the name sp. nov. is proposed. The type strain is B-399 (=NBRC 115629=DSM 114148).

Download full-text PDF

Source
http://dx.doi.org/10.1099/ijsem.0.005969DOI Listing

Publication Analysis

Top Keywords

strain b-399
28
species genus
12
isolated estuarine
8
estuarine sediment
8
sediment arakawa
8
arakawa river
8
b-399
8
strain
7
genus
5
nov isolated
4

Similar Publications

Branch-point syntheses in nonribosomal peptide assembly are rare but useful strategies to generate tripodal peptides with advantageous hexadentate iron-chelating capabilities, as seen in siderophores. However, the chemical logic underlying the peptide branching by nonribosomal peptide synthetase (NRPS) often remains complex and elusive. Here, we review the common strategies for the biosynthesis of branched nonribosomal peptides (NRPs) and present our biochemical investigation on the NRPS-catalyzed assembly of fimsbactin A, a branched mixed-ligand siderophore produced by the human pathogenic strain .

View Article and Find Full Text PDF

High-pressure and low-temperature structural changes in the ferroelectric phase of (R)-3-quinuclidinol are analysed. The changes in unit-cell volume and parameters are continuous both on cooling and under increasing pressure. The anisotropy of the structural strain, however, is found to be different.

View Article and Find Full Text PDF

Emerging wearable devices would benefit from integrating ductile photovoltaic light-harvesting power sources. In this work, we report a small-molecule acceptor (SMA), also known as a non-fullerene acceptor (NFA), designed for stretchable organic solar cell (-OSC) blends with large mechanical compliance and performance. Blends of the organosilane-functionalized SMA BTP-Si4 with the polymer donor PNTB6-Cl achieved a power conversion efficiency (PCE) of >16% and ultimate strain (ε) of >95%.

View Article and Find Full Text PDF

Ductilization of 2.6-GPa alloys via short-range ordered interfaces and supranano precipitates.

Science

January 2025

Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), Hysitron Applied Research Center in China (HARCC) and Center for Alloy Innovation and Design (CAID), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, China.

Higher strength and higher ductility are desirable for structural materials. However, ultrastrong alloys inevitably show decreased strain-hardening capacity, limiting their uniform elongation. We present a supranano (<10 nanometers) and short-range ordering design for grain interiors and grain boundary regions, respectively, in fine-grained alloys based on vanadium, cobalt, and nickel, with additions of tungsten, copper, aluminum, and boron.

View Article and Find Full Text PDF

Salmonella Dublin is a serovar that causes severe infections and cattle. Despite the importance of this agent, research on achieving its elimination from dairy farms is limited, which complicates risk mitigation and control efforts. This study thus aimed to assess the prevalence of S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!