Graphdiyne-Based Multiscale Catalysts for Ammonia Synthesis.

ChemSusChem

Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China.

Published: December 2023

Graphdiyne, a sp/sp -cohybridized two-dimensional all- carbon material, has many unique and fascinating properties of alkyne-rich structures, large π conjugated system, uniform pores, specific unevenly-distributed surface charge, and incomplete charge transfer properties provide promising potential in practical applications including catalysis, energy conversion and storage, intelligent devices, life science, photoelectric, etc. These superior advantages have made graphdiyne one of the hottest research frontiers of chemistry and materials science and produced a series of original and innovative research results in the fundamental and applied research of carbon materials. In recent years, considerable advances have been made toward the development of graphdiyne-based multiscale catalysts for nitrogen fixation and ammonia synthesis at room temperatures and ambient pressures. This review aims to provide a comprehensive update in regard to the synthesis of graphdiyne-based multiscale catalysts and their applications in the synthesis of ammonia. The unique features of graphdiyne are highlighted throughout the review. Finally, it concludes with the discussion of challenges and future perspectives relating to graphdiyne.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.202300861DOI Listing

Publication Analysis

Top Keywords

graphdiyne-based multiscale
12
multiscale catalysts
12
ammonia synthesis
8
catalysts ammonia
4
synthesis
4
graphdiyne
4
synthesis graphdiyne
4
graphdiyne sp/sp
4
sp/sp -cohybridized
4
-cohybridized two-dimensional
4

Similar Publications

Graphdiyne (GDY) science is a new and rapidly developing interdisciplinary field that touches on various areas of chemistry, physics, information science, material science, life science, environmental science, and so on. The rapid development of GDY science is part of the trend in development of carbon materials. GDY, with its unique structure and fascinating properties, has greatly promoted fundamental research toward practical applications of carbon materials.

View Article and Find Full Text PDF

Graphdiyne-Based Multiscale Catalysts for Ammonia Synthesis.

ChemSusChem

December 2023

Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China.

Graphdiyne, a sp/sp -cohybridized two-dimensional all- carbon material, has many unique and fascinating properties of alkyne-rich structures, large π conjugated system, uniform pores, specific unevenly-distributed surface charge, and incomplete charge transfer properties provide promising potential in practical applications including catalysis, energy conversion and storage, intelligent devices, life science, photoelectric, etc. These superior advantages have made graphdiyne one of the hottest research frontiers of chemistry and materials science and produced a series of original and innovative research results in the fundamental and applied research of carbon materials. In recent years, considerable advances have been made toward the development of graphdiyne-based multiscale catalysts for nitrogen fixation and ammonia synthesis at room temperatures and ambient pressures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!