The canonical activation of multimeric inflammasomes usually occurs through caspase-1 activation, and it is characterized by the presence of extracellular IL-1β and IL-18 or measuring danger signal proteins, such as HMGB1 using enzyme-linked immunosorbent assay (ELISA) or Western blots; these assays differentiate non-cleaved and cleaved forms of these two cytokines (the cleaved form is the mature and active form). Similar techniques can be used to assess noncanonical inflammasome activation. Real-time PCR can measure the relative mRNA expression for a specific gene, whereas Western blots or immunocytochemistry can detect the presence of proteins by binding of specific antibodies to their antigens in biological samples. Moreover, noncanonical inflammasome activation can be evaluated through the cleavage of the amino and the carboxy terminals of one important component, gasdermin D (GSDMD), whose cleavage induces its pyroptotic activity. Thus, the analysis of cleaved GSDMD is an ideal pathway to study the noncanonical inflammasome. ELISA and immunoblot can be performed on cell culture supernatants or cell extracts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-3350-2_9 | DOI Listing |
BMC Complement Med Ther
January 2025
Institute of Basic Medical Sciences of Xiyuan Hospital, Beijing Key Laboratory of Chinese Materia Pharmacology, China Academy of Chinese Medical Sciences, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China.
Objectives: This study intended to explore whether the protective effect safflower yellow injection (SYI) on myocardial ischemia-reperfusion (I/R) injury in rats mediated of the NLRP3 inflammasome signaling.
Methods: The I/R model was prepared by ligating the left anterior descending coronary artery for 45 min and then releasing the blood flow for 150 min. 96 male Wistar rats were randomly divided into sham group, I/R group, Hebeishuang group (HBS), SYI high-dose group (I/R + SYI-H), SYI medium-dose group (I/R + SYI-M) and SYI low-dose group (I/R + SYI-L).
Zhong Nan Da Xue Xue Bao Yi Xue Ban
August 2024
Department of Emergency, Xiangya Hospital, Central South University, Changsha 410008, China.
Pyroptosis is a form of programmed cell death triggered by inflammatory caspases, dependent on the gasdermin (GSDM) family proteins forming membrane pores in the plasma membrane, with GSDM proteins serving as the executors of pyroptosis. This process can activate a robust inflammatory response through a cascade effect. Sepsis-associated acute kidney injury (SA-AKI) is a classical inflammatory disease with no specific therapeutic drug available.
View Article and Find Full Text PDFBackground: Our laboratory has demonstrated that the NLRP3 inflammasome has a critical role in the microglial innate immune response to Alzheimer's disease (AD)-related peptides, triggering the release of cleaved-caspase-1 and IL-1β. NLRP3 activation was found in post-mortem tissue from individuals with AD (Heneka et al., 2013) and in transgenic models of AD (APP/PS1 mice).
View Article and Find Full Text PDFBackground: Neuroinflammation is a critical factor of Alzheimer's Disease (AD). Dysregulation of complement leads to excessive inflammation, direct damage to self-cells and propagation of injury. This is likely of particular relevance in the brain where inflammation is poorly tolerated and brain cells are vulnerable to direct damage by complement.
View Article and Find Full Text PDFImmunol Invest
January 2025
Traditional Chinese Medicine, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang, China.
Objective: This study investigated the mechanism of baicalin (BIA) attenuating the inflammatory response and lung injury in mycoplasma pneumoniae pneumonia (MPP) mice.
Methods: MPP mouse models were established and then treated with BIA, azithromycin, or NLRP3 inflammasome activator. Lung wet-to-dry weight (W/D) ratio were weighed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!