Background: A number of molecular marker systems have been developed to assess genetic diversity, carry out phylogenetic analysis, and diagnose and discriminate plant pathogenic fungi. The start codon targeted (SCoT) markers system is a novel approach used here to investigate intra and interspecific polymorphisms of phytopathogenic fungi.
Materials And Methods: This study assessed genetic variability between and within 96 isolates of ten fungal species associated with a variety of plant species using 36 SCoT primers.
Results: The six primers generated 331 distinct and reproducible banding patterns, of which 322 were polymorphic (97.28%), resulting in 53.67 polymorphic bands per primer. All primers produced informative amplification profiles that distinguished all fungal species. With a resolving power of 10.65, SCoT primer 12 showed the highest polymorphism among species, followed by primer 33 and primer 29. Polymorphic loci (PPL), Nei's diversity index (h), and Shannon index (I) percentages were 6.25, 0.018, and 0.028, respectively. UPGMA analysis separated all isolates based on morphological classification and revealed significant genetic variation among fungal isolates at the intraspecific level. PCoA analysis strongly supported fungal species discrimination and genetic variation. The other parameters of evaluation proved that SCoT markers are at least as effective as other DNA markers.
Conclusions: SCoT markers were effective in identifying plant pathogenic fungi and were a powerful tool for estimating genetic variation and population structure of different fungi species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11033-023-08735-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!