AI Article Synopsis

  • Using ITIC derivatives as guest acceptors in binary host systems can enhance the efficiency of ternary organic solar cells (TOSCs).
  • The study compared two ITIC derivatives, PTBTT-4F and PTBTP-4F, incorporated into a PM6:BTP-BO-4F blend, revealing that PTBTT-4F significantly outperformed PTBTP-4F with a power conversion efficiency of 17.67% compared to 16.34%.
  • The better performance of PTBTT-4F is attributed to its compatibility with the host material, leading to improved phase separation and crystallinity, resulting in lower molecular recombination and enhanced charge mobilities.

Article Abstract

Incorporating ITIC derivatives as guest acceptors into binary host systems is an effective strategy for constructing high-performance ternary organic solar cells (TOSCs). In this work, we introduced A-D-A type ITIC derivatives PTBTT-4F (asymmetric) and PTBTP-4F (symmetric) into the PM6:BTP-BO-4F (Y6-BO) binary blend and investigated the impacts of two guest acceptors on the performance of TOSCs. Differentiated device performance was observed, although PTBTT-4F and PTBTP-4F presented similar chemical structures and comparable absorptions. The PTBTT-4F ternary devices exhibited an improved power conversion efficiency () of 17.67% with increased open circuit () and current density (), whereas the PTBTP-4F-based ternary devices yielded a relatively lower of 16.34%. PTBTT-4F showed much better compatibility with the host acceptor BTP-BO-4F, so that they formed a well-mixed alloy phase state; more precise phase separation and increased crystallinity were thus induced in the ternary blends, leading to reduced molecular recombination and improved charge mobilities, which contributed to improved fill factors of the ternary devices. In addition, the optimized PTBTT-4F devices exhibited good performance tolerance of the photoactive layer thickness, as they even delivered a of 15.25% when the active layer was as thick as up to ∼300 nm.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c06981DOI Listing

Publication Analysis

Top Keywords

ternary devices
12
ternary organic
8
organic solar
8
solar cells
8
itic derivatives
8
guest acceptors
8
devices exhibited
8
ternary
6
ptbtt-4f
5
asymmetric non-fullerene
4

Similar Publications

Fine-Tuning Intra/Inter-Molecular Interaction via Ternary Copolymerization Strategy to Obtain Efficient Polymer Donors.

Small

January 2025

Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, 156 Ke Jia Avenue, Ganzhou, 341000, P. R. China.

Incorporating a third component through ternary copolymerization strategy has proven to be a promising and effective approach for further improving the device performance of polymer donors. However, terpolymer donors typically exhibit negative effects on molecular stacking and weaken charge transport due to the irregular distribution of the polymer skeleton. Herein, two terpolymers PBBQ-5 (5% ff-Qx) and PBBQ-10 (10% ff-Qx) are developed by introducing the difluoro-2-(3-hexyldecyloxy) quinoxaline (ff-Qx) to the main chain of PM6.

View Article and Find Full Text PDF

Introduction of a guest component into the active layer is a simple yet effective approach to enhance the performance of organic solar cells (OSCs). Despite various guest components successfully employed in the OSCs, efficient guest components require deliberate design and ingenious inspiration, which still remains a big challenge for developing high performance OSCs. In this work, we propose a concept of "structural gene" engineering to create a new "double-gene" small molecule (L-DBDD) by simply combining the structures of both donor PM6 and acceptor L8-BO.

View Article and Find Full Text PDF

Iron-oxide (FeO) nanoneedles were first in situ grown on the surface of carbon nanofibers (CNFs) using hydrothermal and N annealing process, and then polyaniline (PANI) was coated on the FeO nanoneedles to form network-like nanorods through dilute solution polymerization. The PANI/FeO/CNFs binder-free electrode exhibited a high specific capacitance of 603 F/g at 1 A/g with good rate capability. (The capacitance loss was about 48.

View Article and Find Full Text PDF

A First-Principles Thermodynamic Model for the Ba-Zr-S System in Equilibrium with Sulfur Vapor.

ACS Appl Energy Mater

December 2024

Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle-upon-Tyne NE1 8QH, United Kingdom.

The chalcogenide perovskite BaZrS has strong visible light absorption and high chemical stability, is nontoxic, and is made from earth-abundant elements. As such, it is a promising candidate material for application in optoelectronic technologies. However, the synthesis of BaZrS thin-films for characterization and device integration remains a challenge.

View Article and Find Full Text PDF

Portable Amperometric Biosensor Enhanced with Enzyme-Ternary Nanocomposites for Prostate Cancer Biomarker Detection.

Biosensors (Basel)

December 2024

Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.

Enzyme-based portable amperometric biosensors are precise and low-cost medical devices used for rapid cancer biomarker screening. Sarcosine (Sar) is an ideal biomarker for prostate cancer (PCa). Because human serum and urine contain complex interfering substances that can directly oxidize at the electrode surface, rapid Sar screening biosensors are relatively challenging and have rarely been reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!