The bound state in the continuum in flexible terahertz metasurfaces enabled sensitive biosensing.

Phys Chem Chem Phys

Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, and College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China.

Published: August 2023

The combination of a flexible device and novel electromagnetic resonances offers new dimensions to manipulate electromagnetic waves and promises new device functionalities. In this study, we experimentally demonstrate a flexible metasurface that can support the bound state in the continuum (BIC) in the terahertz regime. The metasurface consists of toroidal dipole resonant units on top of the flexible polyimide substrate, which can support a terahertz Friedrich-Wintgen BIC resonance, and the resonance characteristics can be tuned by changing the parameters of the coupling unit among two resonant modes. The BIC resonances under different bending conditions are analyzed and compared, showing decent mechanical robustness. The sensing application is demonstrated by combining Fetal Bovine Serum with the flexible BIC metasurface. The measured minimum detectable concentration is 0.007 mg mL. Benefiting from the mechanical flexibility and BIC resonance characteristics, our approach can effectively manipulate terahertz waves and have potential applications in the realization of multifunctional and flexible photonic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cp02414hDOI Listing

Publication Analysis

Top Keywords

bound state
8
state continuum
8
bic resonance
8
resonance characteristics
8
flexible
6
bic
5
continuum flexible
4
terahertz
4
flexible terahertz
4
terahertz metasurfaces
4

Similar Publications

The NMR signals from protein sidechains are rich in information about intra- and inter-molecular interactions, but their detection can be complicated due to spectral overlap as well as conformational and hydrogen exchange. In this work, we demonstrate a protocol for multi-dimensional solid-state NMR spectral editing of signals from basic sidechains based on Hadamard matrix encoding. The Hadamard method acquires multi-dimensional experiments in such a way that both the backbone and under-sampled sidechain signals can be decoded for unambiguous editing in the N spectral frequency dimension.

View Article and Find Full Text PDF

γ-Glutamyl carboxylase (GGCX) is the sole identified enzyme that uses vitamin K (VK) as a cofactor in humans. This protein catalyses the oxidation of VK hydroquinone to convert specific glutamate residues to γ-carboxyglutamate residues in VK-dependent proteins (VDPs), which are involved in various essential biological processes and diseases. However, the working mechanism of GGCX remains unclear.

View Article and Find Full Text PDF

Excitons, bound electron-hole pairs, influence the optical properties in strongly interacting solid-state systems and are typically most stable and pronounced in monolayer materials. Bulk systems with large exciton binding energies, on the other hand, are rare and the mechanisms driving their stability are still relatively unexplored. Here, we report an exceptionally large exciton binding energy in single crystals of the bulk van der Waals antiferromagnet CrSBr.

View Article and Find Full Text PDF

Scoring Conformational Metastability of Macrocyclic Peptides with Binding Pose Metadynamics.

J Chem Inf Model

January 2025

Department of Modeling and Informatics, Merck & Co., Inc., Rahway, New Jersey 07065, United States.

Potency optimization of macrocyclic peptides can include both modifying intermolecular interactions and modifying the conformational stability of the bioactive conformation. However, the number of possible modifications is vast. To identify modifications that enhance the stability of the binding conformations in a cost-effective manner, there is a need for a high-throughput in-silico method that scores the conformational stability of these modified molecules.

View Article and Find Full Text PDF

Relying on composite nonlinear feedback, an output-feedback controller is robustly addressed in the singular models with uncertainties, disturbances and time-delays. For this purpose, an observer-based compensator is utilized to realize the purpose. In the presence of disturbance and uncertainty, it is demonstrated that the tracking error and the states of the overall system are ultimately bounded.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!